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Abstract

Iterative methods for 3D image reconstruction have the potential to improve image quality over
conventional filtered back projection (FBP) in X-ray computed tomography (CT). However, the
computation burden of 3D cone-beam forward and back-projectors is one of the greatest
challenges facing practical adoption of iterative methods for X-ray CT. Moreover, projector
accuracy is also important for iterative methods. This paper describes two new separable footprint
(SF) projector methods that approximate the voxel footprint functions as 2D separable functions.
Because of the separability of these footprint functions, calculating their integrals over a detector
cell is greatly simplified and can be implemented efficiently. The SF-TR projector uses trapezoid
functions in the transaxial direction and rectangular functions in the axial direction, whereas the
SF-TT projector uses trapezoid functions in both directions. Simulations and experiments showed
that both SF projector methods are more accurate than the distance-driven (DD) projector, which
is a current state-of-the-art method in the field. The SF-TT projector is more accurate than the SF-
TR projector for rays associated with large cone angles. The SF-TR projector has similar
computation speed with the DD projector and the SF-TT projector is about two times slower.
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l. introduction

Iterative statistical methods for 3D tomographic image reconstruction [1]-[3] offer numerous
advantages such as the potential for improved image quality and reduced dose, as compared
to the conventional methods such as filtered back-projection (FBP) [4]. They are based on
models for measurement statistics and physics, and can easily incorporate prior information,
the system geometry and the detector response.

The main disadvantage of statistical reconstruction methods is the longer computation time
of iterative algorithms that are usually required to minimize certain cost functions. For most
iterative reconstruction methods, each iteration requires one forward projection and one
back-projection, where the forward projection is roughly a discretized evaluation of the
Radon transform, and the back-projector is the adjoint of the forward projector. These
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operations are the primary computational bottleneck in iterative reconstruction methods,
particularly in 3D image reconstruction. Forward projector methods are also useful for
making digitally rendered radiographs (DRR) [5], [6].

Traditional forward and back-projectors compute the intersection lengths between each
tomographic ray and each image basis function. Many methods for accelerating this process
have been proposed, e.g., [7]-[13]. Due to the finite size of detector cells, averaging the
intersection lengths over each detector cell is considered to be a more precise modeling [14]-
[19]. Mathematically, it is akin to computing the convolution of the footprint of each basis
function and some detector blur, such as a 2D rectangular function.

Any projector method must account for the geometry of the imaging system. Cone-beam
geometries are needed for axial and helical cone-beam X-ray computed tomography (CT). In
3D parallel-beam geometry projection space, there are four independent indices (¢, v, ¢, 6).
The ray direction is specified by (¢, 6) where ¢ and 8 denote the azimuthal and polar angle
of the ray respectively and (¢, V) denote the local coordinates on a 2D area detector. In
contrast, axial cone-beam projection space is characterized by three independent indices (s,
t, B) and two distance parameters (Dyo, Dpg), Where g denotes the angle of the source point
counter-clockwise from the yaxis, (s, £ denote the detector coordinates, Dy denotes the
source to rotation center distance and Dpq denotes the isocenter to detector distance. (See
Fig. 1). The axial cone-beam geometry is a special case of helical cone-beam geometry with
zero helical pitch.

The divergence of tomographic rays in the cone-beam geometry causes depth-dependent
magnification of image basis functions, /.e., voxels close to the X-ray source cast larger
shadows on the detector than voxels close to the detector. This complication does not appear
in the parallel-beam geometry. Therefore, many existing projection and back-projection
methods designed for 3D parallel-beam geometry [16]-[18], [20], [21] are not directly
suitable for cone-beam geometry.

A variety of projection methods for 3D cone-beam geometries have been proposed [5], [14],
[15], [22]-[25]. All methods provide some compromise between computational complexity
and accuracy. Among these, spherically symmetric basis functions (blobs) [15], [22] have
many advantages over simple cubic voxels or other basis functions for the image
representation, e.g., their appearance is independent of the viewing angle. However,
evaluating integrals of their footprint functions is computationally intensive. Ziegler et al.
[15] stored these integrals in a lookup-table. If optimized blobs are used and high accuracy
is desired, the computation of forward and back-projection is still expensive due to loading a
large table and the fact that blobs intersect many more tomographic rays than voxels.

Rectification techniques [24] were introduced to accelerate the computation of cone-beam
forward and backward projections. Riddell et a/. [24] resampled the original data to planes
that are aligned with two of the reconstructed volume main axes, so that the original cone-
beam geometry can be replaced by a simpler geometry that involves only a succession of
plane magnifications. In iterative methods, resampled measurements can simplify forward
and back-projection each iteration. However, resampling involves interpolation that may
slightly decrease spatial resolution. Another drawback of this method is that the usual
assumption of statistical independence of the original projection data samples no longer
holds after rectification, since interpolation introduces statistical correlations.

The distance-driven (DD) projector [14] is a current state-of-the-art method. It maps the
horizontal and vertical boundaries of the image voxels and detector cells onto a common
plane such as xzor yzplane, approximating their shapes by rectangles. (This step is akin to
rectification). It calculates the lengths of overlap along the x (or J) direction and along the z
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direction, and then multiplies them to get the area of overlap. The DD projector has the
largest errors for azimuthal angles of the X-ray source that are around odd multiples of /4,
because the transaxial footprint is approximately triangular rather than rectangular at those
angles.

This paper describes two new approaches for 3D forward and back-projection that we call
the separable footprint (SF) projectors: the SF-TR [26] and SF-TT [27] projector. They
approximate the voxel footprint functions as 2D separable functions. This approximation is
reasonable for typical axial or helical cone-beam CT geometries. The separability of these
footprint functions greatly simplifies the calculation of their integrals over a detector cell
and allows efficient implementation of the SF projectors. The SF-TR projector uses
trapezoid functions in the transaxial direction and rectangular functions in the axial
direction, whereas the SF-TT projector uses trapezoid functions in both directions. It is
accurate to use rectangle approximation in the axial direction for cone-beam geometries with
small cone angles (< 2°) such as the multi-slice detector geometries, and to use trapezoid
approximation for CT systems with larger cone angles (> 10°) such as flat-panel detector
geometries.

Our studies showed that both SF projector methods are more accurate than the distance-
driven (DD) projector. In particular, the SF methods reduce the errors around odd multiples
of /4 seen with DD. The SF-TT projector is more accurate than the SF-TR projector for
voxels associated with large cone angles. The SF-TR projector has similar computation
speed with the DD projector and the SF-TT projector is about 2 times slower.

To balance computation and accuracy, one may combine the SF-TR and SF-TT projector,
that is, to use the SF-TR projector for voxels associated with small cone angles such as
voxels near the plane of the X-ray source where the rectangle approximation is adequate,
and use the SF-TT projector for voxels associated with larger cone angles.

The organization of this paper is as follows. Section Il reviews the cone-beam geometry and
projection, describes the cone-beam 3D system model. and presents the analytical formula
of cone-beam projections of voxel basis functions. Section I1l introduces the SF projectors
and contrasts the SF projectors with DD projector. Section IV gives simulation results,
including accuracy and speed comparison between the SF-TR, SF-TT and DD projector as
stand-alone modules and within iterative reconstruction. Finally, conclusions are presented
in Section V.

Il. cone-beam projection

A. Cone-Beam Geometry

For simplicity of presentation, we focus on the flat-detector axial cone-beam geometry (see
Fig. 1). The methods generalize easily to arc detectors and helical geometries.

The source lies on points on a circle of radius Dy centered at the rotation center on the z=0
plane. The source position 73, can be parameterized as follows:

—D,osing

77)0=[ Dgcosp ] (1)
0

where Dy is the source to rotation center distance and S denotes the angle of the source
point counter-clockwise from the y axis. For simplicity, we present the case of an ideal point
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source of X-rays. To partially account for non-ideal X-ray sources, one can modify the
footprint function in (20) and (26) below.

Let (s, 2 denote the local coordinates on the 2D detector plane, where the s-axis is
perpendicular to the zaxis, and the taxis is parallel to the zaxis. A point on the 2D detector
can be expressed as

ssinf — Dogcosf3
t

scosf+Dy,sinS
7= . @

where Dyq = Dyg — Dy is the isocenter to detector distance. The direction vector of a ray
from 3, to 7, can then be expressed as

- = singcosf
—_ P1—=Po
€= = ©)

”7?) 7)) ”— —cosgcosd
1~ Po

sing

where

s
= = t
y=vy(s) £ arctan ( Dsd) e

p=p(s,0) =y(s)+B (5)

0=0(s,t) £ —arctan

t
2 2 (6)
A/ +Dsd

and g and & denote the azimuthal and polar angle of the ray from 3, to 7, respectively.

AN
The cone-beam projections of a 3D object f(X>, where X = (x,,z) are given by

pGap)=[_ f(R)dl. @

L (sth)
where the integral is along the line segment:

L(s.t.p)= {potle:le|0,L,]}

8
L,% ([D?+s2+12 ®

>

For a point X= (x, v, z) between the source and detector, the projected s coordinate of it is

TP (B;‘x’ }’)

T (Bsx,y) =Dy
Bey) =Dy 25

)

where
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Tp, = XCOsf+ysing,
ds = Dso—7L(Bx,y), (10)
T, £ —xsinB+ycosfS
The projected #coordinate is
Dy,
tBx,y,2) =2———— (11
B30 = Gy @

The azimuthal and polar angles of the ray connecting the source and  are

TP (ﬁ;xs y) )
T 2

1X, V) =(+arctan
e By =p (ds(ﬂ;x,y)

6 (B;x,y) = — arctan (13)

z
[2, 12
Ty+ds

B. Cone-Beam 3D System Model

In the practice of iterative image reconstruction, rather than operating on a continuous object
—
f (X) we forward project a discretized object represented by a common basis function

Po (i) superimposed on a Ay x A, x Ng Cartesian grid as follows:
F@)=2f[F]po(F -2 [7]) e B)

where the sum is over the AV xAox N lattice that is estimated and
K [7] = (01 [75] »C2 [_rf] »C3 [71)]) denotes the center of the ¢, basis function and

A= 3. The grid spacing is A= dod | -wi

7= (ny,m,n3) € 7. The grid spacing is A= (A, A,, A3), and @ denotes element-wise
division. We consider the case A1 = A, hereafter, but we allow A1 # A3, because voxels
are often not cubic.

Most projection/back-projection methods use a linear model that ignores the “exponential
edge gradient effect” caused by the nonlinearity of Beer’s law [28], [29]. We adopt the same
type of approximation here. Assume that the detector blur /(s, 9 is shift invariant,
independent of B, and acts only along the sand #coordinates. Then the ideal noiseless
projections satisfy

)_’,; [sistl]=[ [h (s = s,t1— 1) p (s, t;8) dsdt, (15)
—
where p(s, & p) is the 3D projection of f(X) given by (7), and (s, t) denotes the center of
detector cell specified by indices (4, /). The methods we present are applicable to arbitrary

samples (S, ), but for simplicity of presentation and implementation we focus on the case
of uniformly spaced samples:
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si= (k—wy) A, k=0,...,N;— 1,
= (—-w)A,,I=0,...,N;— 1,

we= (Ny— 1) [2+cq,

wi= (N;—1)/2+c;,

(16)

where Agand At denote the sample spacing in sand ¢respectively. The user-selectable
parameters ¢; and ¢ denote offsets for the detector, e.g., ¢; = 1/4 corresponds to a quarter
detector offset [30], [31].

Substituting the basis expansion model (14) for the object into (15) and using (7) leads to the
linear model

Vg Lst. 1] ZZ“'B[S’*”’;T")]JC(TZ)’ 17)

where the elements of system matrix A are samples of the following cone-beam projection

of a single basis function centered at K [75]
ag [Sk, tl;_n>] =F (Sk, 1; ;_n>) (18)
where the “blurred footprint” function is

F(sk, t; ;71)) 2 [ [h(s—s.t— t)q(s, t;ﬁ;?) dsdt, (19)

and q(s, t;ﬁ;ﬁ) denotes the cone-beam footprint of basis function £0 ((3() - [_”)]) ®X), Le.,
q(s.ep7)=[ - ((73 —2[7]) @Z))dl. 20)

Computing the footprint of the voxel is also known as “splatting” [32].

The goal of forward projectors is to compute (17) rapidly but accurately. Although the
system matrix A is sparse, it is impractical to precompute and store even the nonzero system
matrix values for the problem sizes of interest in cone-beam CT, so practical methods
(including our proposed approach) essentially compute those values on the fly.

We focus on a simple separable model for the detector blur

h(s,t)= ! rect (i) rect (ri) (21)

Isty rs t

where r; and 7 denote the width along sand ¢respectively. This model accounts for the finite
size of the detector elements. Note that 7, and # can differ from the sample spacing S — Sx-1
and ¢ - 1 to account for detector gaps.

C. Footprints of Voxel Basis Functions

We focus on cubic voxel basis functions hereafter, but one could derive analytical formulas
for footprints of other basis functions. The cubic voxel basis function is given by,
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po(X)

rect (x) rect (y) rect (z)

(22)
= T2 i</ L)

where 1, denotes the indicator function.

Substituting (22) into (20), the analytical formula for the cone-beam projection footprint of
the -, basis function is:

q(s,18:7)

Jo'Bo((Bo+? 2 [7)) 0 & )at

L
S o7 Ly +leri<an /21 Lidy stesi<ag 23 s vies <as 21l
ay-a-as- [lmax - lmin]+y

(23)

where 2= (e}, e,, e3) Was defined in (3), [ x], £ max (x, 0) and

d% P, __C)[—I{:I:(dl’dz’d:‘),
aj= Liay1<a,2)5 sing=0

: 15 sing # 0,
goe | ldalsagj2ys cosp=0

: I; sing # 0,
ar= Lyasi<as 2y sing=0

’ L; sind # 0,

lpax= min {L,,, LR, li}, (24)

lnin="max {0,11, 2,2},

Rif2=d; —Rif2-d; ) .
li: max{T,T},, e #0
a; 6[20
o [Rip-d Ri2-a)
Ji= mm{e—i,e—i},, e; 0
i —a; ei=0,

For typical cone-beam geometries, polar angles 6 of rays are much smaller than 90°, so
there is no need to consider the case of cos@= 0. Combining (18), (19) and (23) yields the
“ideal” projector for cubic voxels in cone-beam CT.

lll. separable footprint (SF) projector

It would be expensive to exactly compute the true footprint (23) and the “blurred footprint”
(19) for the voxel basis function on the fly, so appropriate approximations of the “blurred
footprint” (19) are needed to simplify the double integral calculation.

To explore alternatives, we simulated a flat-detector cone-beam geometry with Dyy = 541
mm and Dsq = 949 mm. We computed cone-beam projections of voxels analytically using
(23) at sample locations (nAg, mAT) where Ag = At =0.001 mm and n,m € Z, The left
column of Fig. 2 shows the exact footprint function and its profiles for a voxel with A1 = A,
= A3 =1 mm centered at the origin when g = 30°. The center column of Fig. 2 shows those
of a voxel centered at (100, 150, 15) mm when g = 0°. The azimuthal and polar angle of the
ray connecting the source and this voxel center are 14.3° and 2.1° respectively. The cone
angle of a typical 64-slice cone-beam CT geometry is about 2°. The right column of Fig. 2
shows those of a voxel centered at (93, 93, 93) mm when = 0°. The azimuthal and polar
angle of the ray connecting the source and this voxel center are 11.7° and 11.5° respectively.
The cone angle of a typical cone-beam CT geometry with 40 x 40 cm? flat-panel detector is

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 September 01.
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about 12°. The first two true footprints look like 2D separable functions. The third footprint
is approximately separable except for small areas at the upper left and lower right corner.

Inspired by shapes of the true footprints (see Fig. 2), we approximate them as follows,

q(5.087) ~ qup (5.1:87) = 1 (5,087 qur (5. 087)  (25)

where gsf (s, t;ﬁ;7l)) denotes a 2D separable function with unit maximum amplitude,

gsr (5.:87) £ q1 (5.87) 42 (187),  (20)

where g1 (S;ﬁ;Tf) and g2 (t;ﬁ;7l>) denote the approximating functions in sand ¢respectively. In
(25),! (s, t;ﬂ;71)) denotes the “amplitude” of gsr (s, t;ﬁ;_n)).

For small basis functions and narrow blurs /(s, 7, the angles of rays within each detector
cell that intersect each basis function are very similar, so l(s, t;,li‘;?) is much smoother than
(s, Hand q (S, t;ﬂ;Tl)). Substituting (25) into (19) leads to

Fyyr (s, t;ﬁ;?)

h(s,0) 5 | 1(s. 087 ) qsg (5. 687)| 1)
l(s, t;ﬁ;T{) [h (s, 1) % *qsf (s, t;B;Tf) ,

F (s, t;,B;_n))

I

Q

where the inequality uses the fact that l(s, t;ﬁ;7l)) is approximately a constant over each

detector cell. The value ! (Sk, tz;ﬂ;7l>) denotes this constant for detector cell (s, ), and *
denotes 2D convolution

If the detector blur is also modeled as separable, /.e.,
h(s,0)=h (s)h2 (1), (28)
then the blurred footprint functions (27) have the following separable approximation:
Faf (6 1387 ) =1 (5101857 ) Fy (s ) F2 (13B57) . 29)
where

Fy(seBi) 2 [ (s — ) qi (sBi7)ds

F (”;’8;—”)) 2 [y (11— 1) qa (t;,B;_rf) ar. &9

A. Amplitude Approximation Methods

One natural choice for the amplitude function A-) is the following voxel-dependent factor
that we call the A3 method:

l(sk, ll;ﬁ;ﬁ) =l (ﬁ,_l’i) L Z% -lg,  (31)

where
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~ max {lcos (o) |, Isin (o) |}

lo 32)

lgo (33)

~ cos (6p) I°

where ¥0=¢o (ﬁ_ﬁ) and 6o=6o (,375) denote the azimuthal and polar angles of the ray
connecting the source and center of the ¢}, voxel. They can be computed by (12) and (13).
Since this voxel-dependent amplitude depends on angles (6y, ¢o) and S, the approximated

footprint gap (s, t;,3;7) is separable with respect to sand #too. However, the dependence on

voxel centers ¢ [7] requires expensive computation. One must compute Ny x Ao x Ny x Ng
different /g, values and Ny x N, x Ngdifferent /,, values, where A denotes the number of
projection views. In addition, computing /g, and /,, for each voxel at each projection view
involves either trigonometric operations (cos, sin and tan™1) or square and square root
operations to directly evaluate cos and sin.

To accelerate computation of the SF projector, we propose a voxel-ray-dependent amplitude
named the A2 method:

b (Sk, 1 ;_Vl)) = lgy - lotsey  (34)

lotsit) = (35)

cos (6 (sk, 1)) |

where 6(sy, t) given in (6) is the polar angle of the ray connecting the source and detector

center (S, £). There are many fewer tomographic rays (Mg x A) than voxels in a 3D image
(ML x N x N3) and 6(sg, t) does not depend on g for flat detector geometries (see (6)), so

using (34) saves substantial computation versus (31).

We also investigated a ray-dependent amplitude named the A1 method:
L (s, t138) = sy + lo (s 1) (36)

Aq
Loty 2 : :
#o68) ™ max {|cos (¢ (se:8) |, Isin (@ (s¢38)) [}

@3N

where ¢(sk; B) given in (5) is the azimuthal angle of the ray connecting the source and
detector cell center (s, #). For each S, there are A4 different /s« ) for the A1 method and
Ny % No different /,, for the A2 method.

These amplitude methods are similar to Joseph’s method [8] where the triangular footprint
function is scaled by 1/max(]| cos ¢], | sin ¢|) for 2D fan-beam geometry. All three methods
have similar accuracies, but the A3 method is much slower than the other two (see Section
IV-A). Thus we do not recommend using the A3 amplitude in the SF projector method.
Hereafter, we refer to (29) with either (34) or (36) as “the SF method”.
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B. SF Projector with Trapezoid/Rectangle Function (SF-TR)

Inspired by the shapes of the true footprints associated with small cone angles (see the first
two columns of Fig. 2), we approximate them as 2D separable functions with trapezoid
functions in the transaxial direction and rectangular functions in the axial direction. This
approximation is reasonable for typical multi-slice cone-beam geometries, where the
azimuthal angles ¢ of rays cover the entire 360° range since the X-ray source rotates around
the zaxis, whereas the polar angles 6 of rays are small (less than 2°) since the cone angle is
small.

The approximating function in the sdirection is

N
a1 (s:B7) £ trap (5:70,71,72,73)
S—T0

, To<sS<T]
T1—70
_ 1, TI<s<T (38)
- T3—S
P Tr<85<T3
0, otherwise

where g, 71, T and 3 denote vertices of the trapezoid function that we choose to match the
exact locations of those of the true footprint function in the sdirection. They are the

projected s coodinates of four corner points located at (Cl [7] +A1/2,¢ [7] + A2/2) for all
z

The approximating function in the ¢direction is

t—t
—\ 2 0

t.,B;n ) = rect , (39
a2 (18571 ( - ) (39)
where

1 4 l‘++t,,
0, 2 (40)
W = I —1_,

where £ and £ denote the boundaries of the rectangular function which we choose to be the
projected ¢coordinates of the two endpoints of the axial midline of the voxel. Those

endpoints are located at ¢ [7] +(0,0,A3/2), Given Sand a point X= (x, y, 7). the projected
sand tcoordinate of this point can be computed by (9) and (11). Since the boundaries of the
separable function are determined by the projections of boundaries of the voxel basis
function under the cone-beam geometry, the depth-dependent magnification is accurately
modeled.

The blurred footprint functions (30) of this SF-TR projector are

1 r, Ts
Fy (Sk; ;7)=r—7(Sk—55,Sk+3‘), (41)
S

and

1 7 2
F> (tl;ﬁ‘;—n)) =7t[min (t,+5t, t+) — max (tl — Et t_)L, (42)

where
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y(siis2) 2 [ trap (si70371572:73) ds

v1 (max (sq, 7o) , min (s2, T1))

+y2 (max (s1, 71) , min (52, 72))

+y3 (max (s1,72) , min (s2, 73)), (43)
Y1 (b1 bo) & =t (ba = 70) = (b1 = 70)*| Lipyoy),

Y2 (b1,b2) = (by = by) Lipyspy)s

v3(b1,by) = ﬁ_m [(b] e 7'3)2] Lipy>b1}-

C. SF Projector with Trapezoid/Trapezoid Function (SF-TT)

Inspired by the shape of true footprint of a voxel associated with large cone angles (see the
last column of Fig. 2), we approximate it as a 2D separable function with trapezoid functions
in both the transaxial and axial direction. This trapezoid approximation in axial direction is
reasonable for cone-beam geometries with large cone angles (> 10°) such as flat-panel
detector geometries.

Along s, the SF-TT projector uses the same trapezoid approximation as the SF-TR projector.
The trapezoid footprint and the blurred footprint are given in (38) and (41).

The approximated footprint function in #is
a2 (1B £ trap (660, £1,60,63), (44)

where &, &1, & and & denote vertices of the trapezoid function. & and &; are the smallest
and largest one of the projected coordinates of the lower four corners of the -7, voxel

located at (01 [73] +A1/2,¢; [7] +A2/2,¢3 [71)] — A3/2), and &, and &; are the smallest and
largest one of the projected #coordinates of the upper four corners located at

(Cl [71)] £A1/2,¢0 [7] £Ar/2,¢3 [_n)] +A3/2). The blurred footprint function in ¢is

1 T T
) (fIQ,BQ—n>):r_'Y(tl - Et,tl+5t), (45)
t

where yis given in (43).

By choosing the vertices of the approximating footprints to match the projections of the
voxel boundaries, the approximation adapts to the relative positions of the source, voxels
and detector, as true footprints do. Take a voxel centered at the origin as an example. Its
axial footprint is approximately a rectangular function (see the left figure in the third row of
Fig. 2), instead of a trapezoid function. For this voxel trap(¢, &, &1, &, £3) is almost a
rectangle because & ~ & and & ~ &3 because &, &1, & and & are the projected ¢
coordinates of four axial boundaries of this voxel.

D. Implementation of SF Projector

We use the system matrix model (18) with the separable footprint approach (29) for both
forward and back projection, which ensures that the SF forward and back projector are exact
adjoint operators of each other.

Table | summaries the SF-TR projector with the A1 amplitude method (SF-TR-A1) and with
the A2 method (SF-TR-A2) for a given projection view angle 8. Implementating the SF-TT
projector with these two amplitude methods is similar. Implementation of the back-projector
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is similar, except for scaling the projections at the beginning instead of the end. The key to
efficient implementation of this method is to make the inner loop over z (or equivalently

over t) [33], because the values of F1 (S k;ﬁ;?) are independent of zand #so they are
precomputed prior to that loop. Because (11) is linear in z, the first value of & for a given (x,
) position can be computed prior to the inner loop over z, and subsequent values can be
computed by simple incremental updates, cf. [34]. Thus only simple arithmetic operations

and conditionals are needed for evaluating £2 (t,;,B;T%) in that inner loop; all trigonometric
computations occur outside that loop. Note that this separable footprint approach does not
appear to be particularly advantageous for 2D fan-beam forward and backprojection because

computing the transaxial footprint £ (Sk;ﬂ§71>) requires trigonometric operations. The
compute efficiency here comes from the simple rectangular footprint approximation in the
axial direction. More computation is needed for the SF-TT method because it uses
trapezoids in the axial direction instead rectangles.

The implementation of amplitude I(Sk, tz;ﬁ;_n)) in (29) for the Al and A2 methods are
different. For the Al method, for each gthe amplitude 4(s, #; B) is implemented by scaling
projections outside the loop over voxels since it depends on detector cells only. For the A2

method, we implemented the two terms (l% and le(sk,x/)) of b2 (Sk, n ;,8;7) separately. We
scaled the projections by /gs,z) outside of the loop over voxels and computed /,, outside
the inner loop over zsince it does not depend on Z.

The SF methods require O(A*) operations for forward/back projection of a A8 volume to/
from AR samples of the cone-beam projections. There exist O(A2 log A) methods for back-
projection [35]-[37]. However, those algorithms may not capture the distance-dependent
effect of detector blur incorporated in the model (18). In 2D one can use the Fourier Slice
Theorem to develop O(A2 log N) methods [38], but it is unclear how to generalize those to
3D axial and helical CT efficiently.

E. SF Compared with DD

The DD method essentially approximates the voxel footprints using rectangles in both
directions on a common plane such as xzor yzplane. It also uses the separable and shift-
invariant detector blur (21) on the detector plane. However, the approximated separable
detector blurs on the common plane based on the mapped boundaries of original detector
blurs are no longer shift invariant. This appears to prevent using the inner loop over s, that
aids efficiency of the SF methods.

V. results

To evaluate our proposed SF-TR and ST-TT projectors, we compared them with the DD
projector, a current start-of-the-art method. We compared their accuracy and speed as single
modules and within iterative reconstruction methods.

A. Forward and Back-Projector as Single Modules

We simulated an axial cone-beam flat-detector X-ray CT system with a detector size of N x
M =512 x 512 cells spaced by Ag = At =1 mm with Nz =984 angles over 360°. The
source to detector distance Dyq is 949 mm, and the source to rotation center distance Dy is
541 mm. We included a rectangular detector response (21) with r; = Agand = A.

We implemented the SF-TR and SF-TT projector in an ANSI C routine. The DD projector
was provided by De Man et al., also implemented as ANSI C too. All used single precision.
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For both the SF methods and the DD method we used POSIX threads to parallelize the
operations. For the forward projector each thread works on different projection views,
whereas for the back projector each thread works on different image rows (»).

1) Maximum Errors of Forward Projectors—We define the maximum error as
) — e Yo d _ ; 57
e(ﬁ’n)_l;{}‘g]%lF(sﬂt’ﬁ7n) de (S7t’ﬁ7n)|a (46)

where £ is any of the approximate blurred footprints by the SF-TR, SF-TT and DD

methods. We generated the true blurred footprint (S, t;ﬁ;ﬁ) in (19) by linearly averaging
1000 x 1000 analytical line integrals of rays sampled over each detector cell. We computed
the line integral of each ray by the exact method described in (23).

We compared the maximum errors of these forward projectors for a voxel with A1 = Ay =
A3 =1mm centered at the origin. Since the voxel is centered at the origins of all axes, we
choose N = 180 angles over only 90° rotation. Fig. 3 shows the errors on a logarithmic
scale. We compared the proposed three amplitude methods by combining them with the SF-
TR projector. The errors of the A1 method are slightly larger than those of the A2 and A3
method; the biggest difference, at 8= 45°, is only 3.4x1074. The error curves of the A2 and
A3 methods overlap with each other. For the SF-TT projector, we plotted only the Al and
A2 methods because the combination of the SF-TT projector and A3 method is
computationally much slower but only slightly improves accuracy. For the same amplitude
method, the error curves of the SF-TR and SF-TT method overlap. The reason is that the
rectangular and trapezoid approximation are very similar for a voxel centered at the origin of
zaxis. All the SF methods have smaller errors than the DD method, /.e., the maximum error
of the DD projector is about 652 times larger than the proposed SF methods with the Al
amplitude, and 2.6 x 103 times larger than the SF methods with the A2 amplitude when 8=
45°,

Fig. 3 also compares the maximum errors of these forward projectors for a voxel centered at
(100, 150, —100) mm. We choose Njg= 720 angles over 360° Srotation. The error curves of
the SF-TR projector with three amplitude methods overlap and the curves of the SF-TT
projector with the Al and A2 amplitude methods overlap 