
Cognitive Training Quiz Application
Project Report

Group 7: Ran Liu, Nick Uebele
Mentors: Michael Cohen, Yuri Agrawal, Gorkem Sevinc

Background

Many older adults suffer from visuospatial deficits, either following some kind of trauma

or due to simple aging. Visuospatial deficits are characterized by many symptoms, all of which

relate to the loss of the sense of “whereness” in the relation of oneself to one’s environment or

the relation of objects to each other. A pencil-and-paper test, consisting of five training and

testing modules is currently used to assess and treat patients suffering from these deficits and is

given with the help of a physician or test administrator.

Problem

The already-existing pencil-and-paper test is cumbersome to use: the test consists of lots

of paper materials and requires a physician to administer it. By creating this test in a web

application format, we hope to allow patients to take this test by themselves—at home—as often

as they would like in order to improve their visuospatial abilities. By saving their testing data in

a database, physicians can easily view their patients’ performance over time and examine

valuable metrics such as accuracy and response time for each question and patient. Also, we

could allow many other users who may not possess cognitive or visuospatial deficits to use this

application as training to improve their general cognitive health.

Approach

Overview:

We built a responsive single-page web application. This consists of two components: a

user-facing front-end, which users view in a web browser, either on a desktop, or on a tablet or

similar mobile device, and a back-end, which serves a RESTful API which provides the

necessary calls to retrieve, store, and modify data. As this is a software development project, we

essentially have two types of deliverables: documentation, consisting of design documents and

internal specifications, and the physical code itself. We use Stash, a private Git server hosted on

the Johns Hopkins network. During development, we deploy our code to the harb.rad.jhmi.edu

server.

Front-end design:

 Our front-end consists of a responsive web application written in AngularJS. As we lack

an experienced front-end developer on the team, we use Bootstrap as a responsive design

framework in order to enable us to rapidly build serviceable user interfaces. While development

occurs in a desktop environment, we take a largely platform-agnostic approach, where the same

interfaces are usable, regardless of the device and screen size. There are three types of users:

patients, physicians, and administrators. Patients are able to access their own testing histories,

complete the training modules, and submit testing data via the front-end. Physicians are able to

access their patients’ data, as well as manage their associated patient accounts. Administrators

are able to manage all users.

 In order to translate the pen and paper exercises into web application format, we classify

each component of the exercises into one of five categories. For each category, we build a

standardized template, which is then populated with the data and images for each specific

question. The responsibility of serving these assets- i.e. prompts and images for the training and

testing modules, could be delegated to a content delivery network; however, because we are

essentially running all our components on one server, anyhow, for the time being, these assets

are served by the same HTTP server that serves the Angular application. Ultimately, the front-

end of our application consists of static resources that can be served by any HTTP server. The

most common choice would be Apache; we use both Apache and the NodeJS app http-server.

 As part of the design process, we created a series of user interface concept sketches

(Figure 1, 2). From these, we built static mockups, and from static mockups, constructed views

and partials for the Angular single page application.

Figure 1: UI Sketches made in Adobe Photoshop

Figure 2: UI Sketches made in Balsamiq

Figure 3: Final Interface Designs

Back-end design:

 Our back-end consists of a RESTful web service, served by a Ruby on Rails application.

The RESTful API primarily serves CRUD (create, read, update, delete) functionality to the front-

end, allowing for the registration and authentication of users, access to training/testing module

data, and the submission of testing/training results. A RESTful API endpoint is accessed via

HTTP requests (POST, GET, PUT, DELETE) send to a specific URL, which are then dispatched

via a routing service to a controller method which is bound to that endpoint. Data sent between

the front and back ends is stateless (i.e. it presumes no prior knowledge of application state), and

serialized in JSON format. Certain privileged endpoints which require the method caller to

identify/authenticate themselves also consume an authentication token, which are generated

when the login endpoint is called, expire within two hours, and are single-use. These tokens are

refreshed whenever they are used for a privileged API call. For a detailed overview of our API

endpoints, consult the documentation provided in the appendix.

 For development purposes, we used an embedded SQLite database; however, because our

application is built on the Rails framework, it is a fairly trivial task to reconfigure the back-end

server to interface with any of a myriad of database systems, from MongoDB to PostgreSQL.

 The information contained within the pen and paper exercises, however, must be

transcribed over into a digital format. We devised also a JSON format for this data, the

specification for which can be found in the appendix. At a later date, this data can be migrated

into our application database; however, in the meantime, as we work to transcribe the modules,

the ability for humans to read and edit the module data is an important feature.

Results

 As of the latest build, we’ve managed to fully transcribe the five modules of pen and

paper exercises, though the last two modules still lack new artwork (one of our dependencies).

All core functionality has been implemented, along with a few convenience features. We also

have had the opportunity to conduct a UX (user experience) review, and have applied some of

the insights gained in the design of our user interfaces. As the target user-base for this

application is patients whose visuospatial cognitive abilities may be impaired, the accessibility of

the application is of no little importance.

Significance

The significance of this project is that it successfully digitizes an already established

clinical method for assessing and improving patients’ visuospatial abilities, making it easier to

use and more easily accessed by many who could benefit from this cognitive training. By

automating the testing process, we have reduced the workload of physicians and made it easier to

track their patients’ performance and identify trends in performance data exported by the

application. There already exists research that shows that cognitive training can improve

cognitive abilities even in healthy individuals for up to five years after the training occurs, and

we hope to see this application used for preventative purposes in addition to diagnostic or

reactionary treatments.

Management

In terms of the task assignments, we remained fairly true to our management plan. Ran

worked on development of both the back-end and front-end. Nick contributed to front-end

development, module transcription, and worked on UI design. Both Ran and Nick worked to

iterate and polish the UI, gathering feedback from both mentors and fellow students on how to

improve the design.

Our main goal at the outset of the project was to produce a refined, single-page web

application to serve all five modules of the cognitive training quiz. In order to do so, our task list

included development tasks (such as writing the backend server, testing and deploying the

backend, and development of Angular SPA front-end) and refinement tasks, including iterating

and refining our design documents, result storage and reporting, and user interface. Up until very

recently, when we discovered that David Rini from the Arts as Applied to Medicine Department

would be unable to produce all the needed images on time, we believed that we would be able to

fully complete all of our expected deliverables, chief among which were serving all five modules

of the quiz and allowing for result reporting. However, we did already transcribe all of the test

questions for the remaining modules, making it very easy to complete them once we have the

digital images.

The main area where our accomplishments differ from our plans is our maximum

deliverables. At the onset of the project, we set the following as our maximum deliverables:

capabilities for data analytics on stored data, capabilities for advanced queries on data, and

usability studies/pilot studies with actual patients. We were able to implement the capabilities for

data analytics on stored data, but did not quite complete the other two. While considerations have

been made in the design for allowing for advanced queries, we were unable to implement it as of

yet, choosing to spend more time on UI refinement than extra features. The infrastructure for

this feature already exists in the application, but it would require more time to implement.

Lastly, though we were unable to conduct pilot studies, we consulted with the Technology

Innovation Center’s resident UI/UX expert, and gained insights, some of which we were able to

immediate apply, as to how we could improve our interface. The incomplete features, as well as

the incorporation of the artwork for the 4th and 5th modules, would comprise the majority of the

future work on this project.

Though neither of our group members were particularly skilled in front-end development

at the beginning of the semester, our group gained a great deal of insight into web development,

particularly with AngularJS. We also had the opportunity to employ agile methodology in our

software development process, and gained some familiarity with agile techniques. A more

complete knowledge of development higher on the stack also better informs our design decisions

when developing a RESTful service; in addition to the experience gained working with Ruby on

Rails, we’ve also gained a more holistic understanding of the web development process in

general.

Appendix

API Specification:

Method URL Description

POST /api/user/login User login.

POST /api/user/verify Auth token refresh/verification.

POST /api/user/logout User logout; deactivates an auth token.

POST /api/user/register Patient registration.

GET /api/user/physicians Lists physicians.

GET /api/module Lists training/testing modules.

GET /api/module/:moduleid Retrieves info for module

GET /api/module/:moduleid/training

/:componentid

Retrieves component data for training module

component.

GET /api/module/:moduleid/testing/:

componentid

Retrieves component data for testing module

component.

POST /api/module/submit Result submission endpoint.

POST /api/module/results Retrieves results for patient.

POST /api/admin/list Lists all users.

POST /api/admin/register Registers a user.

POST /api/physician/list Lists all patients for a physician.

POST /api/physician/register Registers a patient to a physician.

Module Data Specification:

[Type] denotes an array of objects of Type

Type = {} defines the format of a Type object

("field") denotes that "field" is optional

"value1"|"value2"|"value3" indicates that the value is either "value1", "value2", or "value3"

File format:

[Module]

Module = {

 "training": [Component],

 "testing": [Component]

}

Component = {

 "type": ("instruction"|"single-select"|"multi-select"|"numbers"|"timed-section"),

 "prompt"|"promptUrl": "Prompt html"|"reference to prompt html file",

 If type = "single-select"|"multi-select":

 "promptImg": "reference to prompt image file",

 "options"|"optionUrls": [],

 "answer": index of answer or [answer indices]

 ("angle"): integer angle in degrees - rotates the prompt image.

 ("img_block"): true|false - Whether or not to display prompt image on side, or as new block.

 If type = "numbers":

 "sets": [Span]

 If type = "timed-section":

 "duration": time limit in seconds

 "category": "single-select"|"multi-select"

 "components": [Component (either single-select or multi-select)]

}

Span = [Sequence]

Sequence = [Number], e.g. [0, 1, 2, 4]

Deployment Instructions

Back-end:

1. Clone from Git repository

2. Create, migrate, and seed database

3. Initialize Rails server.

Front-end:

1. Clone from Git repository

2. Start HTTP server

