"An Algebraic Solution to the Multilateration Problem"

Abdelmoumen Norrdine

Yuttana Itsarachaiyot
Seminar Presentation
Group 8: iPASS: Photoacoustic Catheter Tracking

iPASS Overview

- Goal: To track a catheter using a stereo camera by applying laser spots on the surface
- Laser spots can be seen by the stereo camera and generate a photoacoustic signal observed by the piezoelectric element

Paper Selection

Norrdine, A. "An Algebraic Solution to the Multilateration Problem," In
Proceedings of the 15th International Conference on Indoor Positioning and Indoor Navigation, 2012.

- Desired mathematic formulation of multilateration problem
- Possible to implement in system

Multilateration

In general:

- Mathematical technique is usually used for calculating the position of a receiver from signals received from several transmitters

In our case:

- Method to be applied for optimizing the number of PA spots when the number of spots is greater than three

Trilateration

Step:
1)

$$
\begin{aligned}
& \left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}=s_{1}^{2} \\
& \left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}+\left(z-z_{2}\right)^{2}=s_{2}^{2} \\
& \left(x-x_{3}\right)^{2}+\left(y-y_{3}\right)^{2}+\left(z-z_{3}\right)^{2}=s_{3}^{2}
\end{aligned}
$$

2) $\left[\begin{array}{llll}1 & -2 x_{1} & -2 y_{1} & -2 z_{1} \\ 1 & -2 x_{2} & -2 y_{2} & -2 z_{2} \\ 1 & -2 x_{3} & -2 y_{3} & -2 z_{3}\end{array}\right]\left[\begin{array}{c}x^{2}+y^{2}+z^{2} \\ x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}s_{1}^{2}-x_{1}^{2}-y_{1}^{2}-z_{1}^{2} \\ s_{2}^{2}-x_{2}^{2}-y_{2}^{2}-z_{2}^{2} \\ s_{3}^{2}-x_{3}^{2}-y_{3}^{2}-z_{3}^{2}\end{array}\right]$

- Given three reference points $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$, $\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right), \mathrm{P}_{3}\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ and the range measurements $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$
- Find $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z})$

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

with the constraint: $\boldsymbol{x} \in E$

$$
\text { where } E=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{4} \mid x_{0}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right\}
$$

Trilateration (cont'd)

Step (cont'd):
4) General solution of $A \boldsymbol{x}=\boldsymbol{b}$ is $\boldsymbol{x}=\boldsymbol{x}_{p}+t \cdot \boldsymbol{x}_{\boldsymbol{h}}$

Compute $\boldsymbol{x}_{\boldsymbol{p}}$ and $\boldsymbol{x}_{\boldsymbol{h}}$ using the Gaussian elimination method or pseudo inverse of matrix A
5) The solutions are $\boldsymbol{x}_{\boldsymbol{1}}=\boldsymbol{x}_{p}+t_{1} \cdot \boldsymbol{x}_{\boldsymbol{h}}$

$$
\boldsymbol{x}_{2}=\boldsymbol{x}_{p}+t_{2} \cdot \boldsymbol{x}_{\boldsymbol{h}}
$$

Where $\boldsymbol{x}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)^{T} \quad \boldsymbol{x}_{p}=\left(x_{p 0}, x_{p 1}, x_{p 2}, x_{p 3}\right)^{T} \quad \boldsymbol{x}_{\boldsymbol{h}}=\left(x_{h 0}, x_{h 1}, x_{h 2}, x_{h 3}\right)^{T}$

Multilateration

$$
\left[\begin{array}{cccc}
1 & -2 x_{1} & -2 y_{1} & -2 z_{1} \\
1 & -2 x_{2} & -2 y_{2} & -2 z_{2} \\
1 & -2 x_{3} & -2 y_{3} & -2 z_{3} \\
\vdots & \vdots & \vdots & \vdots \\
1 & -2 x_{n} & -2 y_{n} & -2 z_{n}
\end{array}\right]\left[\begin{array}{c}
x^{2}+y^{2}+z^{2} \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
s_{1}^{2}-x_{1}^{2}-y_{1}^{2}-z_{1}^{2} \\
s_{2}^{2}-x_{2}^{2}-y_{2}^{2}-z_{2}^{2} \\
s_{3}^{2}-x_{3}^{2}-y_{3}^{2}-z_{3}^{2} \\
\vdots \\
s_{n}^{2}-x_{n}^{2}-y_{n}^{2}-z_{n}^{2}
\end{array}\right]
$$

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

with the constraint: $\boldsymbol{x} \in E$

Additional reference points and distances
Step:

1) The solution in the sense of least squares method

$$
\hat{\boldsymbol{x}}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}
$$

Multilateration (cont'd)

2)

2.1) First candidate: from step 1)
2.2) Further candidates by using the Recursive Least Squares:
2.2.1) Select one of two solutions from Trilateration problem, which is closer to the first candidate, as a starting point
2.2.2) Let x_{0} be the initial solution, then x_{0} is updated to x_{1} by every coming distance
2.3) The solution candidate, which minimizes the error square sum, is chosen

$$
\min _{N}\left\{\left(\left\|N-P_{1}\right\|^{2}-s_{1}\right)^{2}+\ldots+\left(\left\|N-P_{n}\right\|^{2}-s_{n}\right)^{2}\right\}
$$

Experiment

- Distance measurement between the stations with positioning system
- Demonstration of the location of the mobile station located on points P_{36} and P_{38}
- Compare the results from the numerical method with the true coordinates

Experimental Results

Solution based on three reference points (Trilateration)

- The true coordinate of the unknown point P_{36} are $(24.34,-2.51,1.13)$
- Three reference points are $\mathrm{P}_{37}, \mathrm{P}_{331}$, and P_{102}
- The solutions of the trilateration problem are
- $\mathrm{N}_{1}=(24.35,-2.48,1.67)$ and
- $\mathrm{N}_{2}=(24.31,-2.52,1.54)$

Experimental Results (cont'd)

Solution based on six reference points (Multilateration)

- The true coordinate of the unknown point P_{38} are (26.76, -1.34, 1.13)
- Six reference points are $\mathrm{P}_{37}, \mathrm{P}_{31}, \mathrm{P}_{102}, \mathrm{P}_{43}, \mathrm{P}_{208}$, and P_{101}
- The solution of the multilateration problem is
- $\mathrm{N}=(26.77,-1.34,1.46)$

Assessment

Pros:

- Based on linear algebraic method
- Versatile
- Possible to implement in current system

Cons:

- Unclear in some parts
- Lack of experimentation on moving objects

Computational
Sensing + Robotics
the Johns hopkins universit

Questions?

