

Optical Properties for Bioluminescence Tomography in Mice

Computer Integrated Surgery II

Spring, 2016

Alan Cham, under the auspices of Drs. Ken Wang and Bin Zhang

Introduction

- Tabulated tissue-specific optical properties (absorption μ_a and reduced scattering $\mu_s{}^{'})$ from literatures
 - Six organs (adipose, heart, kidney, liver, lung, stomach)
 - Four wavelengths 590, 610, 630 and 650 nm.
- Produced code to convert simulation results from open source Monte Carlo software, Molecular Optical Simulation Environment (MOSE), to Nirfast files for use in existing home-built bioluminescence tomography (BLT) implementation.
- Experimentally determined optimal number of photons to simulate in homogeneous medium for convergence of results.
- Performed BLT reconstruction experiments along midline in heterogeneous mouse mesh using forward-simulated surface transmittance

The Problem

 BLT has been implemented in the Small Animal Radiation Research Platform (SARRP) for purpose of localizing targets with low CT contrast in small animal models via 2D bioluminescence imaging.

- Previous experiments using the SARRP primarily explored localization of targets in regions of mouse that are relatively optically homogeneous (i.e. abdomen).
- Localization of targets in heterogeneous regions requires segmentation of organs as well as knowledge of optical properties to assign to those regions in reconstruction
 - Literature values for mouse organ optical properties are relatively sparse and have large variations, depending on:
 - Method of measurement.
 - Physiological conditions.
- It is useful to describe the target (e.g. tumor) localization uncertainty introduced of the SARRP BLT's reconstruction in an optical heterogeneous environment.

The Solution

- Obtained optical properties for use in simulation and reconstruction by calculating using Alexandrakis' empirical model after evaluation in context of other sources (see 'top' and 'bottom left' figures below).
- Developed workflow to produce forward simulation data and reconstruct with BLT.
 - Assigned optical properties to segmented mouse mesh in MOSE
 - Experimented for optimal photon count for simulation (see 'middle' figure below). Used 1e6 due to runtime considerations. Results from 1e7 used as 'ground truth'.
 - Code to adapt MOSE simulation outputs for reconstruction in home-built BLT implementation

Top: COM error as function of position along mouse midline axis. Middle: Projection of mesh organs onto midline axis. Bottom: anterior-posterior and lateral views of all source positions.

Outcomes and Results

- Demonstrated inherent increase in localization uncertainty, even when provided complete knowledge of optical properties and organ segmentations in simulated condition (see above figures).
- COM error consistently <1 mm in homogeneous mesh regions, in agreement with prior expectations
- Peak COM error near position Y=50 mm deemed higher than prior expectations and warrants additional exploration.

Errata

 Forward simulation results were obtained using a labeled mesh, in which lung, liver, and kidney labels were swapped

Future Work

• Recorded COM error along heterogeneous mouse midline

- Future work will address correction of the above errata by performing BLT reconstruction using same workflow and corrected mesh
- Note single point at position Y=50 mm plotted above, obtained with corrected mesh

Lessons Learned

- Clarity of presentation can be as important as the material presented
- Even code/calculations from credible sources should be verified
 - On several occasions, found likely errors in published optical property calculations and also in mesh labelling

Credits

• Alan Cham was the sole student partner in this project, under the guidance of Drs. Ken Wang and Bin Zhang.

Publications

 At this time, no submissions for publication are planned for the above-described work.

Support by and Acknowledgements

- Thanks to Drs. Ken Wang and Bin Zhang for their kind mentorship.
- Thanks to Alexis Cheng and Dr. Russell Taylor for organizing and managing this opportunity and course in CIS.

