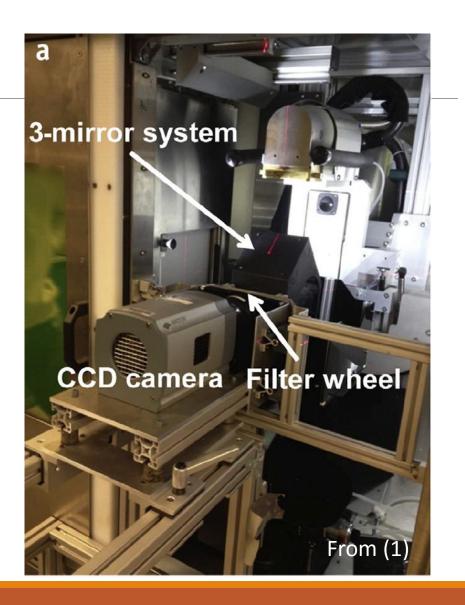
Project 15:

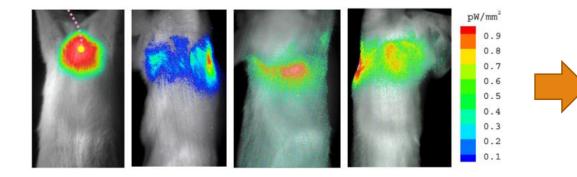
Mouse segmentation and optical properties for bioluminescence tomography (BLT)

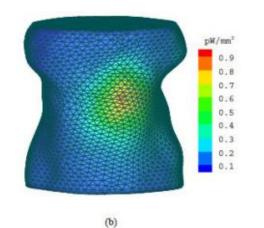
TEAM: ALAN CHAM

MENTORS: BIN ZHANG, JUNGHOON LEE, KEN WANG

Topic and Goals

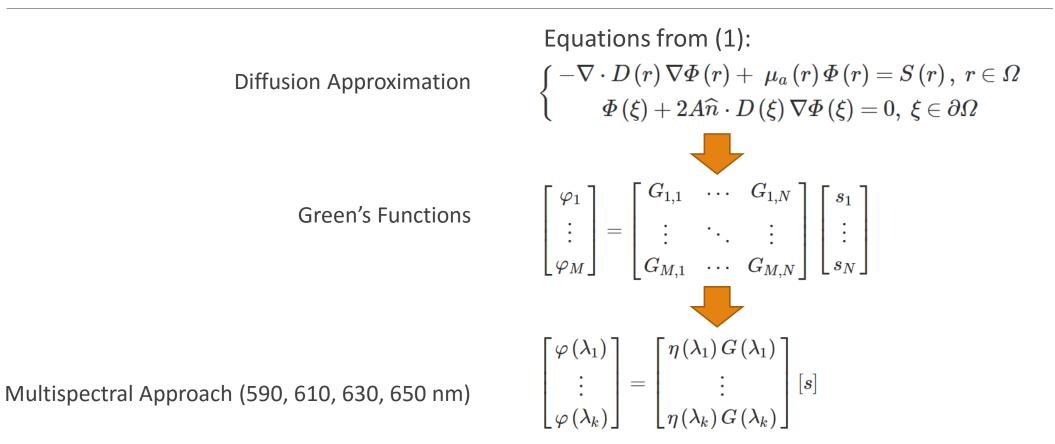

- Gather literature values of mouse organ optical properties and evaluate their distribution
- Expedite the segmentation of cone beam computed tomography (CBCT) images of mice.
- Modify existing BLT reconstruction to address optical property heterogeneity.
 - Experiment with optical property sets for best reconstruction.


Statement of Relevance

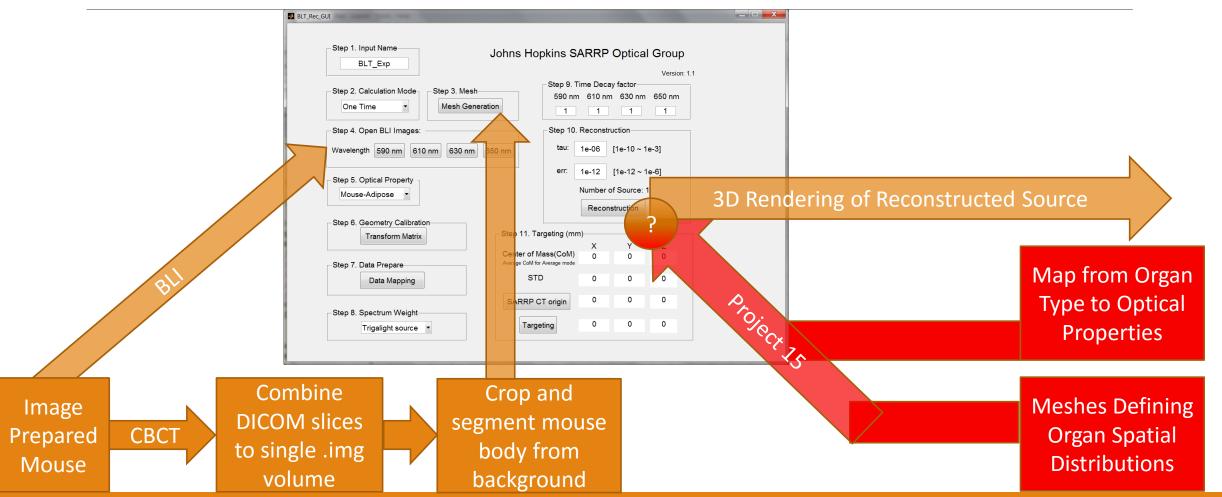

Small Animal Radiation Research Platform (SARRP)

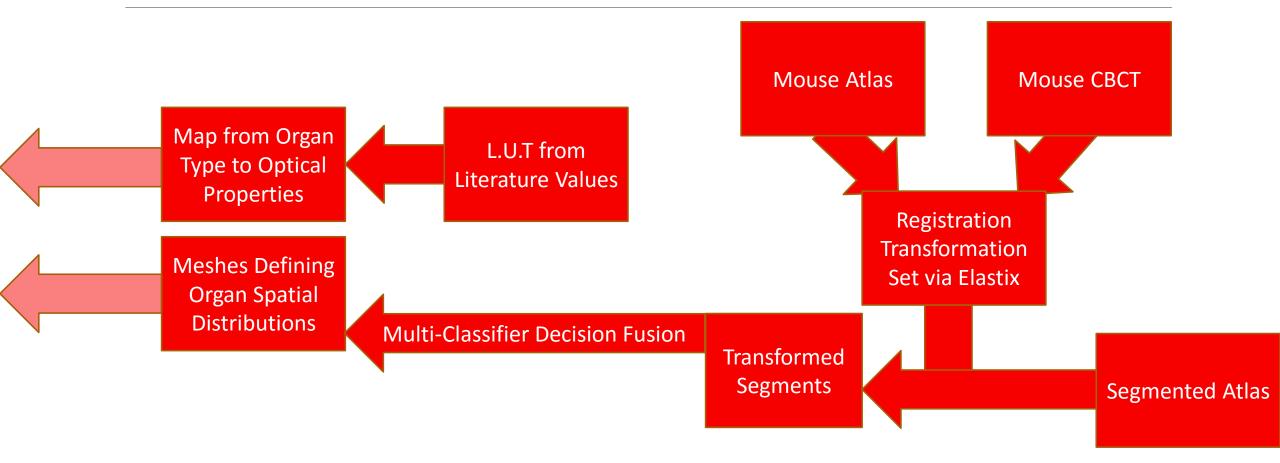
- Tool for preclinical radiation research
- CBCT for radiation delivery guidance
- CBCT has less utility for localizing small/lowcontrast targets in soft tissue
- Hence, incorporated bioluminescence tomography (BLT)

Basic Idea of BLT



Images from (16)


Basic Idea of BLT


Project 15:

To address optical property heterogeneity in reconstruction:

Summary of Technical Approach

Project 15 Approach

Deliverables

Minimum Deliverables

- Tabulate literature values for optical properties
- Manually segment mouse images for atlas and simulated source
- Modify Matlab code to incorporate organ specific optical properties
- Test code under simulation conditions

Expected Deliverables

- Workflow for registering new images to atlas set using elastix
- Matlab code for multi-classifier decision fusion strategy

Maximum Deliverables

- Perform BLT experiment on implanted light source in specific organ
- Determine optimal optical property value sets for reconstruction

Project Timeline

	Week of:											
Key Milestones Highlighted	February			Ma	irch			April			May	
	21	28	06	13	20	27	03	10	17	24	01	
Read Elastix Manual (2-3)												
Read Core Literature (5-13)		1										
Project Plan + Presentation												
Read BLT documentation												
Run BLT on Sample Images			2									
Seminar Presentation												
Manual Segment Atlas Set												
Checkpoint Presentation												
Second Literature Round						3						
Modify BLT code												
Test BLT in Simulation								4				
Try <u>Elastix</u> Parameters												
Multi-class decision fusion												
Experiments with new sets										5		
Final Exam + Poster Session												
1. <mark>3/5</mark> : Finished tabulatin	gcore	literatu	ire res	ultsan	d main	readin	gphas	e.				
 Ready for sem 	inar pro	esentai	tion fo	r week	of 3/06	5						
2. <mark>3/12</mark> : Able to execute e	existing	g BLT w	orkflo	wandl	oegin n	nodifica	ation					
3. <mark>3/27</mark> : Modified BLT cod	de to in	corpor	ate op	tical p	roperti	es info	rmatio	n				
 Manualsegme 	ntatio	ns for a	tlas co	mplete	ed							
 Finished optica 	• •	•	-	-								
 Ready for check 	-	•				/27						
4. <mark>4/16</mark> : Tested modified												
 Decided on Ela 		_	•				. .					
5. <mark>4/30</mark> : Finished experim	-					w data	trom i	mplant	ed sou	rces		
 Ready to prod 	ucetina	al repo	rtand	presen	tation							

Dependencies

Resource	Status	Comment
Mouse image set for initial BLT practice	Received	
Mouse image sets for atlas + experiments	Unknown	To be discussed w/ mentor 2/29 Digimouse alternative/complement (14,15)
Matlab source code	Received	
SAARP/BLT workflow documentation	Received	
Elastix registration software	Installed	
Nirfast light transport modeling software	Received	

Management Plan

Skills

- Weekly meetings with mentor
- Regular e-mail correspondence
- Progress updates on project wiki

• CIS Prerequisites

Preliminary Reading List

- 1) Zhang, B., Wang, K.K., Yu, J., Eslami, S., Iordachita, I., Reyes, J., ... Wong, J.W. Bioluminescence Tomography–Guided radiation therapy for preclinical research. *International Journal of Radiation Oncology *Biology *Physics*, doi:<u>http://dx.doi.org/10.1016/j.ijrobp.2015.11.039</u>
- 2) Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W. "elastix: a toolbox for intensity based medical image registration," IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 196 205, January 2010. download doi
- 3) Shamonin, D.P., Bron, E.E., Lelieveldt, B.P.F., Smits, M., Klein, S., Staring, M. "Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease", Frontiers in Neuroinformatics, vol. 7, no. 50, pp. 1-15, January 2014. download doi
- 4) Rohlfing, T., Brandt, R., Menzel, R., & Maurer Jr., C. R. (2004). Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. *Neuroimage*, 21(4), 1428-1442. doi:http://dx.doi.org/10.1016/j.neuroimage.2003.11.010
- 5) Honda N, Ishii K, Terada T, Nanjo T, Awazu K; Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse monte carlo method and double integrating sphere between 350 and 1000 nm. J. Biomed. Opt. 0001;16(5):058003-058003-7. doi:10.1117/1.3581111.
- 6) Kienle, A., Lilge, L., Patterson, M.S., Hibst, R., Steiner, R., and Wilson, B.C. "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996)
- 7) Torricelli, A., Pifferi, A., Taroni, P., Giambattistelli, E., Cubeddu, R. (2001). In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy. *Physics in Medicine and Biology, 46*(8), 2227.
- 8) Bashkatov, A.N., Genina, E.A., Tuchin, V.V. (2011). Optical properties of skin, subcutaneous, and muscle tissues: A review. Journal of Innovative Optical Health Sciences, 04(01), 9-38.
- 9) Cheong, W., Prahl, S.A., & Welch, A. J. (1990). A review of the optical properties of biological tissues. *Quantum Electronics, IEEE Journal of, 26*(12), 2166-2185.
- 10) Firbank, M., Hiraoka, M., Essenpreis, M., and Delpy, D.T. (1993). Measurement of the optical properties of the skull in the wavelength range 650-950 nm. *Physics in Medicine and Biology, 38*(4), 503.
- 11) Sandell, J.L., & Zhu, T.C. (2011). A review of in-vivo optical properties of human tissues and its impact on PDT. Journal of Biophotonics, 4(11-12), 773-787.
- 12) Jacques, S.L. (2013). Optical properties of biological tissues: A review. *Physics in Medicine and Biology, 58*(11), R37
- 13) Welch, A.J, Gemert, M.J.C. Optical-thermal response of laser-irradiated tissue. Dordrecht: Springer; 2011
- 14) B. Dogdas, D. Stout, A. Chatziioannou, RM Leahy, Digimouse: A 3D Whole Body Mouse Atlas from CT and Cryosection Data, Phys. Med. Bio, 52: 577-587, 2007. <u>http://dx.doi.org/10.1088%2F0031-9155%2F52%2F3%2F003</u>
- 15) D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, A. Chatziioannou, Creating a whole body digital mouse atlas with PET, CT and cryosection images, Molecular Imaging and Biology. 2002; 4(4): S27
- 16) Ge Wang, Wenxiang Cong, Kumar Durairaj, Xin Qian, Haiou Shen, Patrick Sinn, Eric Hoffman, Geoffrey McLennan, and Michael Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14, 7801-7809 (2006)