Browser-based Constructive Solid
Geometry for Anatomical Models

Final Report

Vikram Chandrashekhar, Nicole Ortega
Mentors: Alex Mathews and Param Shah
May 6, 2016

(EN.600.446) Computer-Integrated Surgery II

Dr. Russell Taylor

Goal

The goal of our project is to develop a browser-based constructive solid geometry application for

the efficient creation of 3D anatomical models, specifically the creation of a modular orthosis.

Motivation and Background

One in 323 children in the US are born with cerebral palsy. Two out of every three children born
with cerebral palsy could walk if they had proper orthotic devices to alleviate their condition.
Currently, ankle foot orthoses are used to correct gait and prevent muscle deformities. The
current process for making custom ankle foot orthoses is tedious and wasteful. This process
begins by creating a mold of the foot of interest. After this mold is made, it is filled to create a
cast of the foot. Once the cast hardens, the mold is removed, leaving just the cast of the foot. The
orthosis is created around this cast and cut away when completed. Ultimately, the cast, mold, and

scraps of material from the
Components of

orthotic device added
orthosis are thrown away. The 2 ndsto to leg scan using
i browser-based
software
cost to make a custom orthosis Data format: .qbi/.stl

ranges from $400 - $600

(compared to $10 - $80 for a

non-custom, off-the-shelf) o) -
Figure 1. Workflow for clinical use, The red box is our contribution to the

kflow,
orthoses) and can take up to 3 workiow

weeks. Checkups every 6 months are required for adjustments. On average, these orthoses are
replaced every six to eight months, which involves repeating the tedious and wasteful casting

process.

Fusiform Medical Devices, a medical device company, has developed a process to reduce waste
and time of designing and casting a custom orthosis as shown in Figure 1. The Fusiform process
begins by using a structure sensor mounted on an iPad to take a 3D anatomical scan of the leg to
a lmm accuracy. The orthosis is then created in Solidworks using the scan and is fabricated by a
CNC milling machine. This process reduces waste since it no longer requires the creation of a
mold of the leg while also taking advantage of the CNC machine’s subtractive production. While
the end result of this process is still a custom cast, the individual pieces that comprise the cast

can easily be replaced due to the modularity of the design of the components.

However, the Fusiform process has room for improvement. On average, it takes approximately
10 hours to design the orthosis on SolidWorks. The goal of our project is to develop a
browser-based constructive solid geometry application for the efficient creation of 3D
anatomical models, specifically the creation of a modular orthosis. This approach is unique in
that no other browser-based interface like this exists nor has it been applied to anatomical

models.

Technical Approach

Our browser-based software was developed using Javascript and HTML. In order to perform the
3D rendering and modeling we used an open-source Javascript library called three.js. Using
three.js as our framework, we integrated multiple additional components to create an all-in-one
constructive solid geometry software. The two key functionalities added were constructive solid

geometry and mesh simplification/modification.

Constructive Solid Geometry

Constructive solid geometry (CSG) is the use of boolean operators to combine polyhedra in a
d-dimensional space. For this project, we restrict the discussion to the three-dimensional case as
it is the most relevant. The three boolean operations that were considered were: union,
intersection, and subtraction; a union operation
is the combination of two polyhedra that
represents all the points contained in either the
first or second polyhedron. The intersection of
two polyhedra represents all of the points in

both the first and second polyhedron. Lastly, the

subtraction of two polyhedra represents all of

a.union(b) a.subtract (k) a.intersect (b)

the points in the first polyhedron but not in the
Figure 2: Visual representation of CSG operations

second one. These three operations can be Source; hip:/fcodevisually.com/wp-contentuploads 200 1/ 12/evdec]_ 06, jpg

visualized in Figure 2. This functionality is extremely useful as complex polyhedra can then be

represented by boolean combinations much simpler objects. For our project in particular, CSG

will allow the orthotist to combine pre-designed orthoses components in various ways with a

scan of the leg to customize the orthosis. In order to implement this functionality in our

browser-based software we chose to use an open-source three.js-compatible CSG library called

three-csg.

Mesh Simplification

Mesh simplification is the act of reducing the points on a mesh while attempting to preserve its
topography and features. Several methods of mesh simplification exist including
vertex/edge/face decimation, energy function optimization and vector clustering. For this project,
we focused on quadric simplification. Quadratic Simplification computes the Q matrix for all the
initial vertices on the mesh. The Q matrix is the quadric error, sum of fundamental error
quadrics. Quadrics are created by the planes that meet at the vertex. The quadric error is
calculated using the formula Av = v'Qv. Valid vertex pairs are chosen if the pair is an edge or
the Euclidian distance is less than a threshold. The optimal contraction of a valid pair is
determined by the equation v’'(Q, +Q,)v’ and is designated as the cost of the contraction.
Vertex pairs with minimal cost are contracted and the whole process is repeated. For our project,
mesh simplification will allow the manipulation of a mesh in a browser environment. In order to
implement this functionality in our browser-based software we chose to use an open-source c++

mesh simplification code converted to javascript using Emscripten.

Create shell Mesh smoothing,

Software Workflow reducing vertices
around mesh and watertight

After developing these individual

CSG and mesh simplification Cut shell
using CSG

components, they were combined
into a single package. The workflow Figure 3. Workflow for our software.

for our software is shown in Figure 3 and the

functions implemented in our software are shown in Figure 4. This workflow is expanded from
the red box in Figure 1.

The orthotist receives an

2 meshes union Single combined mesh

annotated leg scan from the doctor

2 meshes subtract Single mesh with the volume of the second
mesh eliminated

and begins by creating a shell around
2 meshes intersect Single mesh made up of the overlap between
the two meshes

the mesh. After performing mesh

1 mesh quadric simplication Reduces number of vertices and faces in the
mesh while preserving topology

Simpliﬁcation and smoothing 1 mesh remove duplicates Remove duplicate vertices in mesh

1 mesh exportOB)J Downloads .obj file representing the selected

. mesh
Operatlonss the Shell and cut to create 1 mesh scale Scales mesh in x, y, and z directions by a given
amount
. 1 (or more) meshes | remove Removes the selected meshes from the scene

a cast of the leg. Predesigned ()

1 mesh rotateX, rotatey, Rotates the selected mesh around an axis (x, y,

rotateZ or z) by a given amount

components of the orthosis are then

Figure 4. Software architecture with general overview of functions
intersected with the cast using

various CSG operations to create custom fit components. The completed orthosis is then saved

and sent to the CNC machine to be fabricated.

Management Summary

Proposed Deliverables

Minimum
e three.js ’playground” in browser using constructive solid geometry algorithms for
simple objects (sphere, cube, prism, etc)
o sphere/cube addition algorithm
o CSG union algorithm
o CSG intersect algorithm
o CSG subtract algorithm
e Mesh modification module for simple objects
Expected
e Mesh modification module for anatomical scans
o Mesh cutting algorithm
o Mesh smoothing algorithm

6

o Mesh simplification algorithm
o Watertight mesh algorithm
o Mesh scaling
Maximum
e Test cast fabrication using a 3D printer and test “fits” on patients

Actual Deliverables

Minimum
e three.js ’playground” in browser using constructive solid geometry algorithms for
simple objects (sphere, cube, prism, etc)
o sphere/cube addition algorithm
o CSG union algorithm
o CSQG intersect algorithm
o CSG subtract algorithm
e Mesh modification module for simple objects
e Mesh importing (for .stl/.obj files)
Expected
e Mesh modification module for anatomical scans
o Mesh cutting algorithm
o Mesh smoothing algorithm
o Mesh simplification algorithm
o Mesh scaling
Maximum
e Playground with improved usability - sliders (to change parameters)
e Rotation of objects independently of axis
e Mesh Exporting (.obj files)

Removed Deliverables

o Mesh modification module for simple objects - Removed

e Test cast fabrication using a 3D printer and test “fits” on patients - Removed
Unmet Deliverables

e Watertight mesh algorithm

Division of Labor

The development of the software was split equally over the course of the semester. The CSG

integration was completed by Vikram Chandrashekhar. Mesh modification algorithms were

implemented by Nicole Ortega.

Dependencies

Dependency

Resolution

Three.js - Javascript software package that interfaces with
WebGL to perform 3D rendering

Available online for free

The Visualization and Computer Graphics Library for mesh
modification algorithms (in C/C++)

Available online for free

Emscripten to port C/C++ code to Javascript

Available online for free

ThreeBSP js to perform CSG

Available online for free

Object (.obj/.stl) files of anatomical leg scans

Provided by mentors on 3/15

MeshLablJS - Javascript application ported from C++ used to
obtain simplification and vertex removal algorithms

Available online for free

All dependencies have been resolved prior to starting development.

Milestones
Milestone Expected Date | Completion Date
Create a browser-based three.js playground (add, March 1 February 25

move, and drag simple objects)

Algorithms for simple objects (sphere, cube)

Implement Constructive Solid Geometry (CSG) March 20 March 10

Expand the CSG algorithms to work for anatomical March 25 March 20

objects

Implement a mesh decimation/reduction algorithm for | March 30 March 30
anatomical objects

Implement a mesh cutting algorithm for anatomical April 2 April 5
objects

Implement mesh smoothing algorithm for anatomical April 10 April 15
objects

Improve usability by adding parameter customization | April 30 April 25

for various functions

Add functions to rotate objects independently of the April 30 April 30
world-axis

Lessons L.earned and Future Plans

Through this project we learned the necessary skill set to develop a browser based application
with Javascript. A major challenge we faced was quickly trying to learn Javascript and
integrating different open source packages into one application. We also learned the importance

of software design documentation.

This project will be ongoing over the summer and fall of 2016. The primary goals of this
continuation will be to implement a more user-friendly user interface with our software and
complete any unmet deliverables. Since this project has been a proof-of-concept for the
development of a browser-based CSG application, the secondary stages will involve significant
refining/modification to our software. The second iteration of this software should be completed

by the end of August 2016.

Acknowledgements

We would like to thank our mentor Alex Mathews and Param Shah for providing us with
guidance. As well as Dr. Russell Taylor and Alexis Cheng for helping us develop project

management skills.

10

