Browser Based Constructive Solid Geometry for Anatomical Models

Nicole Ortega and Vikram Chandrashekhar

Team Members

- Vikram Chandrashekhar, Biomedical Engineering 2016
- Nicole Ortega, Biomedical Engineering 2016

Mentors

- Alex Mathews, Fusiform Medical Devices
- Param Shah, Fusiform Medical Devices

🚺 FUSIFORM

Skills

Vikram

• Programming: Javascript (three.js), HTML, C, C++

Nicole

• Programming: C, C++, Java

Motivation

- 1 in 323 children are born with cerebral palsy in US
- 2 in 3 could walk if they had proper orthotics
- Ankle foot orthotics
 - Corrects gait and prevents deformities

🌗 FUSIFORM	Motivation	Background	Tech Appro	Organization	Bibliography

Problems with Current Process

- Tedious and wasteful casting process
 - Mold \rightarrow fill mold \rightarrow send to manufacturer \rightarrow create orthotic \rightarrow throw away remaining material and mold
- Replaced every 6-8 months on average
- ~ 3 weeks for custom device
- 6 month checkups adjustments, new one
- Non-reusable (waste material)
- Cost
 - \circ off the shelf: \$10 -80
 - custom: \$400 600

Fusiform Process

- Anatomical Scan of leg using Structure Sensor
 - iPad mounted 3D scanner, with our app to take anatomical scans to 1mm accuracy
- Create orthotic using scan
 - 10 hour process to layer orthotics in Solidworks
- Fabricate orthotic using CNC machine
 - CNC machine subtractive production
 - Interchangeable parts
 - Less waste

Here is where we come in!

Our Role

• Reduce the amount of time required to design and fit 3D cast

Technical Approach

- three.js playground (<u>http://bit.ly/1QYe9HJ</u>)
 - Develop Javascript base to add/delete simple shapes
- Constructive solid geometry
 - Combining objects/meshes using boolean operators
- Mesh modification
 - \circ scaling
 - mesh cutting
 - defining multiple cuts
 - water-tight algorithms
- Anatomical model shell
 - 1 cm of material on top of anatomical model
 - $\circ \quad \text{mesh cutting} \rightarrow \text{add components of cast} \rightarrow \text{merge/modify cast}$
- Validation in third party application (like MeshLab or SolidWorks)

Deliverables

Minimum	-Implement constructive solid geometry algorithms for simple objects (sphere, cube, prism, etc)			
Expected	 Expand above algorithms to anatomical objects, particularly 3D leg scans Implement mesh modification algorithms to make mesh easier to work with (smoothing, cutting, reducing) Implement an algorithm to create a planar cut in a 3D mesh 			
Maximum	-Using browser-based software, test cast fabrication using a 3D printer and test "fits" on patients			
🌗 FUSIFORM	Motivation Background Tech Appro Organization Bibliography			

Dependencies

Minimum/Expected:

- Three.js 3D Javascript library used to interface with WebGL
 - Open Source library
- Blender/CAD to verify algorithms' correctness
 - Mentors
- Anatomical scans of legs using iPad mounted scanner
 - Mentors

Maximum:

- 3D Printer to create the cast
 - Mentors

Management Plan

- BitBucket: Version Control (private repository)
- Slack: Keep track of milestones on timeline
- Weekly team meeting: Mondays @ 5 pm & Wednesdays @ 6 pm
- Weekly meeting with mentors: Wednesdays @ 5 pm

🌗 FUSIFORM	Motivation	Background	Tech Appro	Organization	Bibliography

Management Plan

Vikram	Nicole
Lead creating three.js playground	Become familiar with three.js and mesh modification algorithms
work together on mesh modific	ation implementation in Javascript
work together on anat	omical mesh modification

Milestones

	< 2016 · · · · · · · · · · · · · · · · · · ·			
	ruary 2016	March 2016	April 2016	
Activity	12 15 16 17 18 19 22 23 24 25 26 29 01 02 0	3 04 07 08 09 10 11 14 15 16 17 18 21 22 23 24 25 28 29 30 31	1 01 04 05 06 07 08 11 12 13 14 15 18 19 20 21 22 25 26 27 28 29	
three.js playground 🗸 🗸				
add variety of simple shapes				
remove shapes				
drag & move shapes				
constructive solid geometry algorith 🗸 🗸				
union simple objects				
intersect simple objects				
subtract simple objects				
refined controls for three.js playgrou 💙				
mesh modification algorithms 🛛 🗸 🗸				
scaling mesh				
mesh smoothing algorithm				
mesh cutting algorithm				
water-tight algorithm				
Integrate into web browser 🗸 🗸				
Test using sample 3D print				
	R M Motivation	Background Tech Appro	Organization Bibliography	
	are supported	Ŭ II		

Reading List

- 1. Amenta, Nina, Marshall Bern, and David Eppstein. "Optimal Point Placement for Mesh Smoothing." *Journal of Algorithms* 30.2 (1999): 302-22. Web.
- 2. Dey, T. K., & Goswami, S. (2003). Tight Cocone: A Water-tight Surface Reconstructor. *Journal of Computing and Information Science in Engineering J. Comput. Inf. Sci. Eng.*, 3(4), 302.
- 3. Fan, Lubin, Ligang Lic, and Kun Liu. "Paint Mesh Cutting." Computer Graphics Forum 30.2 (2011): 603-12. Web.
- 4. Gregori, R. M., Volpato, N., Minetto, R., & Silva, M. V. (2014). Slicing Triangle Meshes: An Asymptotically Optimal Algorithm. 2014 14th International Conference on Computational Science and Its Applications.
- 5. Ji, Zhongping, Ligang Liu, Zhonggui Chen, and Guojin Wang. "Easy Mesh Cutting." *Computer Graphics Forum* 25.3 (2006): 283-91. Web.
- 6. Plato, Jan Von. "The Axioms of Constructive Geometry." Annals of Pure and Applied Logic 76.2 (1995): 169-200. Web.
- 7. Ricci, A. "A Constructive Geometry for Computer Graphics." *Computer-Aided Design* 6.1 (1974): 53. Web.

