
Critical Review: A Comparison of Mesh
Simplification Algorithms

Nicole Ortega, Group 16

Abstract
The goal of our project is to develop a browser-based constructive solid geometry application
for 3D anatomical models. “A Comparison of Mesh Simplification Algorithms” [1] by
Cignoni, Montani and Scopigno can be best described as a literary review paper that
characterizes fundamental simplification methods and compares six simplification methods
using the Metro Tool. Ultimately, knowledge derived from this paper, as well as other cited
sources, will be applied to determine which simplification method will perform best on
anatomical models for use in a bowser-based environment.

Project Overview
One in 323 children in the US are born with cerebral palsy. Two out of every three children
born with cerebral palsy could walk if they had proper orthotics to alleviate their condition.
Fusiform, a medical device company has developed a process to reduce waste, reduce time
and increase efficiency of orthotic design and fabrication. Currently, the process demands
approximately 10 hours to create a single custom design orthotic in SolidWorks. The goal of
our project is to develop a browser-based constructive solid geometry application for 3D
anatomical models. This application would allow the orthotist to add pre-designed orthotic
components onto a 3D leg scan of cerebral palsy patients. 	

Simplification Methods and Characteristics
Complex meshes are great for precise representations of a model. However, ……..There are
many different methods that are implemented for simplification of a mesh. Among them
include, but are not limited, to the methods discussed below.
• Coplanar facets merging – multiple triangles in the

same plane merge into a large polygon. The
polygon is then divided into fewer triangles, called
re-triangulation.

• Controlled vertex/edge/face decimation –
vertices/edges/faces that fit a specific criterion are
removed. In the case of vertex and edge decimation,
the resulting hole is re-triangulated.

• Re-tilling – random vertices are inserted into the
mesh and moved to areas of curvature. This is then
followed by vertex decimation.

• Energy function optimization – an energy function
is defined to measure the quality of the mesh.
Actions (collapsing, swapping, or splitting) that fit a
specific criterion and cause the lowest increase to
the energy function are executed.

• Vertex clustering – clusters of vertices are

Figure	
 1.	
 Coplanar	
 facets	
 merging	

Figure	
 2.Re-­‐triangulation	

combined into one vertex with its positioned usually determined by the average position
of all the vertices.

Simplification algorithms use one these methods, or modified implementations, to perform
simplification. To avoid describing how each algorithm performs simplification, the paper
characterizes algorithms (on Table 1[1]) with the following features:

• Optimization goal – minimize the size of the mesh given an error or minimize the
error given a size

• Incremental simplification – multiple iterations of the algorithm
• Topological features – feature which the algorithm modifies. This includes vertices,

edges, faces, and vertex pairs
• Local/global error (or other) – approximation error calculated on a local level (specific

area), on a global level (entire mesh), or by other means (energy func)
• Bounded error – error

restricted to an upper and
lower bound

• Preservation of global mesh
topology

• Relocation of vertices
• Preservation of solid/features

edges or angles
• Multi-resolution output
• Speed and availability

To compare mesh simplification algorithms, six simplification algorithms were tested on three
meshes: the bunny, the fandisk and the femur. The performance of each simplification
algorithm was evaluated using the Metro Tool. The Metro Tool is a tool to evaluate
approximation decision. The tool allows for updates at different levels of detail (number of
vertices and triangles) and does not require knowledge of what method was used for the
simplification. The approximation error is used to evaluate differences in precision. To
compute the approximation error, the simplified mesh is sampled and a point-to-surface
distance to the original mesh is computed. The outputs to compare likeness are as follows:
Nvertices , Ntriangles, Emax, Eavg ,Time, Edge, Length, Area, and Memory (kb). This can be seen on
Tables 2, 3, and 4 on the paper.

Simplification Algorithms
Six simplification codes were tested on the following three meshes: bunny, fandisk and femur.
The simplification algorithms are characterized and briefly described below, as well as
detailed in cited sources in the paper.

Mesh Decimation [2] Characterization: Decimation algorithm, minimize error, incremental,
vertices, local error, no bounding error,
preservation of mesh topology, no
relocation of vertices.	
 	

Mesh Decimation begins by
characterizing the local vertex geometry
and topology into one of five options:

Figure	
 3.	
 From	
 left	
 to	
 right:	
 Bunny,	
 Fandisk,	
 and	
 Femur

Figure	
 4.	
 Characterization	
 of	
 vertices	
 [2]	

simple, complex, boundary, interior edge, and corner. Complex vertices are not deleted. Each
vertex is then evaluated using decimation criteria. The decimation criterion calculates the
vertex distance to the average plane for simple vertices or the vertex distance to the edge for
boundary and interior vertices. If the vertex distance is less than d then the vertices (and all of
its associated triangles) are deleted. The resulting hole is re-triangulated and the process is
repeated.

Multi-resolution Decimation [3] Characterization: Decimation algorithm, minimize error and
size, incremental, vertices, global and bounded error, multi-resolution output, preservation of
mesh topology, no relocation of vertices.
Multi-resolution Decimation uses JADE (Just Another Decimator), an enhanced decimation
algorithm. JADE uses the same classification of vertex topology as the Mesh Decimation
algorithm (Figure 4). It then evaluates each vertex using a global approximation error
criterion. The vertices with minimal local and accumulated global errors are selected for
deletion. The resulting hole is re-triangulated using edge flipping and the process is repeated.

Simplification Envelopes [4] Characterization: Decimation algorithm, minimize size, not
incremental, vertices, global and bounded error, preservation of mesh topology, no relocation
of vertices. 	

Simplification Envelopes surround the mesh with an
inner and outer mesh, an envelope. The envelope is a
user specific distance e from the mesh. Vertex
decimation occurs, but the resulting simplified mesh
must stay within the bounds of the envelope. This
enables preservation of global topology.

Mesh Optimization [5] Characterization: Energy Optimization algorithm, minimize size,
incremental, vertices and edges, other error, no bounded error, preservation of mesh topology,
relocation of vertices.
Mesh Optimization minimizes the following energy function: E(K, V) = Edist(K, V) + Erep(K)
+ Espring(K, V). The first term describes the distance energy, the sum of the squared distances
of the points from the mesh. The second term embodies the representation energy, which
penalizes meshes with large number of vertices. The last term is the spring energy, which acts
like placing a spring on the edge of the mesh with rest length 0 and tension k. This term is
used to regulate optimization to a desired local minimum.

Progressive Meshes [6] Characterization: Energy Optimization algorithm, minimize size,
incremental, edges, other error, no bounded error, multi-resolution output, preservation of
mesh topology, relocation of vertices.
Progressive Meshes is similar to Mesh Optimization. The following equation describes the
energy function: E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M). This equation includes
the distance and spring energy terms found in Mesh Optimization, but also includes two other
terms that preserve attributes of the mesh. The third term represents scalar energy, which
measures the accuracy of its scalar attributes such as diffuse color, normal, texture coordinates

Figure	
 5.	
 Simplification	
 Envelope	
 [4]	

and shading parameters. The fourth term is the disc energy, which measures the geometric
accuracy of discontinuity curves (ie. sharp edges).

Quadratic Error Metrics Simplification [7] Characterization: Clustering algorithm, minimize
size and error, incremental, vertex pairs, global error, not bounded error, multi-resolution
output, no preservation of mesh topology, relocation of vertices.
Quadratic Error Metrics Simplification computes the Q matrix for all the initial vertices on the
mesh. The Q matrix is the quadric error, sum of fundamental error quadrics. Quadrics are
created by the planes that meet at the vertex. The quadric error is calculated using the formula
∆v = vTQv. Valid vertex pairs are chosen if the pair is an
edge or the Euclidian distance is less than a threshold.
The optimal contraction of a valid pair is determined by
the equation v’T(Q1 +Q2)v’ and is designated as the cost
of the contraction. Vertex pairs with minimal cost are
contracted and the whole process is repeated. 	

Results
After running tests, the authors found that Mesh Decimation and Simplification Error failed to
reach high simplification rates on the femur data. They suspect that the problem arises from
both algorithms removing vertices in random order. The authors suggest that iterating
multiple times through the mesh would provide a partial solution. Additionally, they found
that Progressive Meshes and Mesh Optimization provide the best average error across the
meshes. Simplification Envelope and Multi-resolution Decimation provided the best results
when high accuracy was needed. Interesting results were found for the Quadric Error
algorithm. When the algorithm was used for the fandisk mesh, fast speeds and small errors
were attained. However, large errors were attained for the femur and bunny mesh. The authors
believe that these large errors occurred because the meshes had open boundaries. The authors
claim that inserting perpendicular planes at boundary edges and assigning large costs to
deletion of these vertices can reduce the error.

Project Analysis: Femur Data
Since our project uses anatomical models, it is important to closely analyze the results of the
femur mesh. On average, our 3D leg scans contain 47 thousand vertices and 92 thousands
triangles. In comparison, the femur mesh contains 76 thousand vertices and 153 triangles. In
order for the application to update at a decent speed, we need to simplify our mesh down to 10
thousand vertices. We also need our mesh to load onto the browser in less than a minute.
Preservation of mesh topology and features is important in this medical application to build a
custom orthotic from the 3D leg scan. Thus, I compared the results for each method on the
femur data at 10% simplification (approximately 8 thousand vertices). Nvert and Area were not
considered because of their similar results across algorithms. Edge length was not considered
because of large variability within a single algorithm. The following results were found, with
1 denoting the best performance and 5 denoting the worst performance.

 Emax Eavg Time Mem. kb

Figure	
 6.	
 Vertex	
 contraction	
 [7]	

Mesh Decimation 5 6 1 1

Simplification Env. 1 (Best) 5 4 4

Multiresolution Dec. 2 3 3 2

Mesh Optimization 4 1 6 3

Progressive mesh 3 2 5 N/A

Quadric Error Metric 6 (Worst) 4 2 N/A

In summary,

• Simplification Envelope performed best in terms of smallest max error
• Mesh Optimization performed best in terms of average error
• Mesh Decimation performed the simplification the fastest
• Mesh Decimation reduced the size of the mesh the most

Applications
In order decide which algorithm to apply to our 3D leg scan, preservation of mesh, accuracy,
and speed must be considered. Immediately, Quadric Error Metric is eliminated. Not only
does it have the worst maximum error, but also its use of the clustering method does not
preserve mesh topology. In terms of accuracy, all methods have similar average errors. Speed,
on the other hand, differs greatly across algorithms. Because we are trying to create an
application that works on a browser, speed is our primary concern. With this in mind, I
believe that Mesh Decimation would produce the best results. Additionally, I believe that if a
bounded error criterion (similar to Simplification Envelope) were created and implemented
using a kd tree, the maximum error would be reduced. However, this might come at a run-
time cost.

Paper Critiques
Looking positively, the paper was thorough, had a good overview of methods, contained
complete and detailed tables and covered a wide range of methods with its simplification
codes. However, the paper also had a lot of negative aspects. The content was too broad and
needed a clear and specific focus. The tables, although informative, were cluttered, hard to
read, and at times confusing. The choices of characterization features were not explained
(except for mesh topology). Additionally, it would have been helpful to summary the methods
used in the six simplification codes and provide a table summary of the results. Lastly, and
most importantly, the results lacked deep analysis and mainly appeared to regurgitate
information seen in the tables.

Citations
[1] Cignoni, P., C. Montani, and R. Scopigno. "A Comparison of Mesh Simplification
Algorithms." Computers & Graphics 22.1 (1998): 37-54. Web.

[2] Schroeder, William J., Jonathan A. Zarge, and William E. Lorensen. "Decimation of
Triangle Meshes." ACM SIGGRAPH Computer Graphics SIGGRAPH Comput. Graph. 26.2
(1992): 65-70. Web.

[3] Ciampalini, A., P. Cignoni, C. Montani, and R. Scopigno. "Multiresolution Decimation
Based on Global Error." The Visual Computer 13.5 (1997): 228-46. Web.

[4] Cohen, Jonathan, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj
Agarwal, Frederick Brooks, and William Wright. "Simplification Envelopes." Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH
'96 (1996). Web.

[5] Hoppe, Hugues, Tony Derose, Tom Duchamp, John Mcdonald, and Werner Stuetzle.
"Mesh Optimization." Proceedings of the 20th Annual Conference on Computer Graphics
and Interactive Techniques - SIGGRAPH '93 (1993). Web.

[6]Hoppe, H., Progressive meshes. In ACM Computer Graphics Proc.. Annual Conference
Series (Siggraph '96), 1996, pp. 99±108.

[7] Garland, Michael, and Paul S. Heckbert. "Surface Simplification Using Quadric Error
Metrics." Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques - SIGGRAPH '97 (1997). Web.

