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Project Overview
One in 323 children in the US are born with cerebral palsy. Two out of every 

three children born with cerebral palsy could walk if they had proper orthoses to 
alleviate their condition. Fusiform Medical Devices has developed a process to 
reduce waste, reduce time and increase efficiency of orthosis design and 
fabrication. Currently, the process requires approximately 10 hours to create a 
single custom-designed orthosis in SolidWorks. The goal of our project is to 
develop a browser-based constructive solid geometry application for 3D 
anatomical models. This application would allow the orthotist to add pre-designed 
orthotic components onto a 3D leg scan of cerebral palsy patients. In addition, 
this software would be much simpler to use, reducing the amount of time 
required to design the casts.

Paper Selection
Since the goal of our project is to develop a constructive solid geometry 

(CSG) application that runs in realtime, the paper chosen is “Set Operations on 
Polyhedra Using Binary Space Partitioning Trees” by William Thibault and Bruce 
Naylor. This paper provides a mathematical foundation for and algorithm for 
performing constructive solid geometry. 

Problem Summary and Key Results
The goal of this paper is to introduce a method to efficiently perform CSG 

on any d-dimensional polyhedra. Methods available at the time this paper were 
written used boundary representations (b-reps) to represent polyhedra. B-reps 
are methods for representing shapes using limits. This paper proposed to use 
binary space partitioning trees (BSP trees) to represent and perform operations 
on these polyhedra more efficiently. Using BSP trees, this paper describes an 
algorithm to incrementally perform CSG operations including union, intersect, 
and subtract on d-dimensional polyhedra. The algorithm in the paper speeds up 
these operations and also introduces methods to optimize the memory usage of 
the BSP tree.

Significance of Result
The results of this paper are highly relevant to this project; we are currently 

working with very large triangular meshes and need to perform CSG in realtime 
so it is imperative that our memory usage and processing time are very low to 
minimize lag. This paper covered BSP tree reduction which could potentially 
reduce the memory and run time associated with objects created using CSG. 
These improvements could be particularly useful when creating objects with 
~50000 vertices and ~90000 faces.



Glossary
Boundary representation (B-rep) - A d-dimensional solid represented as a 
collection of (d-1)-polyhedra (also called faces) represented by (d-2)-polyhedra 
until d = 0
Binary space partitioning tree (BSPT) - a binary tree whose non-leaf nodes are 
labeled with hyperplanes and whose leaf nodes correspond to cells of a 
partitioned d-space.
Cell - area enclosed by splitting hyperplanes
Hyperplane - a (d-1)-dimensional subspace in d-space (e.g. a 2D plane in 3D 
space but generalized to any higher-dimensional space)
Half-space - either of the 2 parts into which a (hyper)plane divides a d-
dimensional space
R(v) - the intersection of open half-spaces from the root to any node v
Sub-hyperplane - the intersection of the splitting hyperplane and the region R(v) 
defined by any node v
Regular set - set that consists of its interior and its boundary
“in” - a cell is in the interior of a polyhedron
“out” - a cell is in the exterior of a polyhedron
“on” - a point is on the boundary of a polyhedron
CSG tree - a CSG representation of a set S in a binary tree in which the internal 
nodes represent set operations and the leaves are primitive polyhedra

Description of Results
Generic BSP trees represent recursive, hierarchical partitioning of d-

dimensional space. Specifically, this project is concerned with three-dimensional 
space. BSP trees are generated by choosing hyperplanes that partition the 
interior of the subspace, producing two 
new subspaces that can be subdivided. 
the left and right children of the nodes 
of the BSP trees represent the space to 
the left (behind) and to the right (in 
front) of a splitting hyperplane 
respectively. The right side is taken to 
be the side of the hyperplane to which 
normal vector points. An example 
partitioning of 2D space is shown in 
Figure BSPT. 

Given this understanding of BSP trees, one can use the algorithm described 
in Figure BUILD-BSPT to convert a boundary representation of a polyhedron to a 
BSP tree representation. This algorithm has two requirements: 
• all points on the boundary of polyhedra must lie on sub-hyperplanes of the 

BSP tree



• all cells must correctly be classified 
“in” or “out”.

In order to ensure that all boundary 
points of the polyhedra lie on sub-
hyperplanes of the BSP tree, the 
splitting hyperplanes chosen will embed 
faces. Using these rules, the steps 
required in the conversion from b-rep to 
BSP tree are as follows:

1. Choose a splitting 
hyperplane that embeds a 
face of the polyhedron

2. Store this hyperplane in the 
current node. Determine 
whether the other faces of 
the polyhedron lie to the left 
or to the right of the current 
hyperplane and pass this 
information to the respective 
subtrees.

3. If either the left or right side face 
list is empty, then that region is 
homogenous. Based on the rules in 
Figure BUILD-BPST, the 
appropriately labeled “in” or “out” 
node is appended to the left or right 
subtree depending on which list is 
empty.

4. This process is recursively applied 
to the left and right subtrees until 
both the left and right subtrees are 
empty.

From this algorithm, the ability to insert a 
single face into a BSP tree follows. First the 
face is split by the hyperplane in the root 
node; the left portion of the face is passed to 
the left subtree and the right portion of the 
face is passed to the right subtree. This is 
repeated recursively until new leaf nodes are 
created with correct classification of the cells. 

This paper also discusses an algorithm 
in Figure INCREMENTAL SET-OP to perform 
regularized set operations (as in Figure 
SIMPLIFY) on B-reps and BSP trees. Given BSP tree T’ representing polyhedron 
T and B-rep (or BSPT) B’ representing polyhedron B, the algorithm in order to 
perform these set operations is as follows:



1. Insert all faces of B’ into BSP tree T’
2. If at some node v, no part of B’ is found to lie on one side of the 

splitting hyperplane then that region is homogenous
3. Determine whether the region is “in” or “out” of B
4. Determine what to do with the appropriate subtree by following the 

control flow in Figure INCREMENTAL SET-OP
5. If v is a leaf then R(v) is homogenous and will either retain T’s value or 

B’s value
The paper also presented a similar algorithm to perform on CSG trees in 

order to convert them to BSP trees. However, this algorithm was less significant 
for this project as CSG trees are much more useful visually than computationally.

However, this paper did also include BSP tree reduction as a way to reduce 
the amount of memory required to represent these complex polyhedra. There are 
2 cases in which it is possible to reduce the BSP tree:

1. Both subtrees a given node v are cells with identical values
2. A node that has one child cell and no part of the boundary in its sub-

hyperplane
In the first case, the tree can be reduced by eliminating that node and replacing it 
with either an “in” or “out” node as appropriate. The solution to the second case 
is to eliminate the node altogether.

Conclusions
BSP trees serve as a unifying data structure to perform search operations, 

set operations, and visible surface determination whereas a b-rep requires 
separate structures for all of those computations. This reduces the conceptual 
and computational complexity associated with CSG operations and search 
operations.

Assessments
I think overall, this paper was very good. It was very detailed in all aspects 

of the mathematical basis for the BSP trees. In addition, these explanations were 
very easy to follow, even to someone who had no knowledge in the field of 
graphics. The pseudocode is also very clear and provides a clear picture of how 
to implement these algorithms. However, while these algorithms are very clear, 
they are restricted to linear approximations of non-linear polyhedra like spheres.
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