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Project Summary

- Orthoses for cerebral palsy 
patients

- Fusiform developed a process to 
reduce waste, reduce time and 
increase efficiency of orthotic 
design/fabrication

- Currently: ~10 hour process to 
create orthotic in SolidWorks 

- Browser based software to add 
pre-designed orthotic components

Browser Based Constructive Solid Geometry for Anatomical Models
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Goal of Paper:
● Use binary space partitioning trees (BSPTs) to perform constructive solid 

geometry (CSG) operations
○ Why: BSPTs are much faster and more unified than other methods to compute CSG 

operations

Application to Project:
● Modify current CSG package to optimize nodes of BSPT



Some terms and Definitions
● Boundary representation (B-rep) - A d-dimensional solid represented as 

a collection of (d-1)-polyhedra (also called faces) represented by (d-2)-
polyhedra until d = 0

● Binary space partitioning tree (BSPT) - a binary tree whose non-leaf 
nodes are labeled with hyperplanes and whose leaf nodes correspond to 
cells of a partitioned d-space.

● Cell - area enclosed by splitting hyperplanes
● Hyperplane - a (d-1)-dimensional subspace in d-space (e.g. a 2D plane in 

3D space but generalized to any higher-dimensional space)
● Half-space - either of the 2 parts into which a (hyper)plane divides a d-

dimensional space



BSPT terminology
● Each internal node v of 

BSPT represents region of 
space R(v)

● R(v) is the intersection of 
open halfspaces on the path 
from the root to v

● Associated with partitioning 
hyperplane Hv

● 3 regions
○ R(v) ∩ Hv

+

○ R(v) ∩ Hv
-

○ R(v) ∩ Hv
● Sub-hyperplane (SHp(v)) - 

R(v) ∩ Hv



Generic BSPTs
● Recursive, hierarchical 

partitioning of d-dimensional 
space

● Nodes store splitting 
hyperplanes

● Distinction between halfspaces 
determined by normal vector - 
arbitrary choice

● Right subtree - region lying on 
side pointed to by normal

● Left subtree - the other region



B-rep -> BSPT
● Requirements

○ All points on boundary of polyhedra lie 
in sub-hyperplanes of the resulting tree

■ Embed faces
○ Correct classification of cells

■ “In” vs “out”
● Algorithm

○ Choose hyperplane H
○ Partition faces left of, right of, or 

coincident with H
■ When empty, we know that region 

is homogenous
○ Recursively apply to left and right face 

subtrees



Inserting a face
1. Let v be some node in the tree (initially equal to root) and f be some face 

to add
2. Partition f by Hv and pass the part of f lying to the left of Hv to v.left and 

part of f lying to the right to v.right
3. Repeat this process until part of f reaches a leaf (create a new node)

Using this process one can go from a trivial BSP to BSP tree representing 
polyhedra



Evaluating Set Operations
● Regular set - set that 

consists of its interior and its 
boundary

● Partition space into regions 
such that at least one 
operand is homogenous in 
each region  (e.g. ext( S ) or 
int( S ))



Evaluating Set Operations
Given BSP tree T’ representing 
polyhedron T and B-rep (or BSPT) B’ 
representing polyhedron B. 
Perform T -* B:

1. Insert all faces of B’ into T’
2. If at some node v, no part of B’ is 

found to lie on one side of Hv (let’s 
say left) then R(v.left) is 
homogenous

3. Determine whether the region is 
“in” or “out” of B



Evaluating Set Operations
4. Determine what to do with the 

appropriate subtree (v.right or v.
left) given the operation and type 
of region

5. If v is a leaf, then R(v) is 
homogenous and will either retain 
T’s value or B’s value



Evaluating Set Operations
● Perform T -* B



CSG Trees
● A binary tree in which the 

internal nodes represent 
(regularized) set operations and 
leaves are instanced primitives

● Easier visual representation for 
complex objects

● Not particularly useful 
computationally (need to convert 
to BSPT)



BSP Tree Reduction
● Eliminate certain nodes without changing the set - reduction in memory
● Both subtrees of node v are cells with identical values

○ Replace subtree with single value

● Node that has one child and contains no part of the boundary (u)
○ Remove this node



Conclusions
● Similarity between octrees and BSP trees

○ Recursively subdivide space
○ Assign values to leaves
○ Dimension independent

● Key difference: BSPT hyperplanes do not have to be axis-aligned
○ Octrees tend to be more verbose as a result (more memory)

● B-rep algorithms - independent search structure, set operations, and 
visible surface determination

● BSP tree -> all unified in a single structure
○ reduces the conceptual complexity and complexity of implementations



Assessment
Pros:

● Very detailed
● Not too complicated to follow
● Many diagrams to illustrate 

concepts
● Clear pseudocode

Cons:

● Could have provided more 
detail as to why approach is 
better

● Could have used better 
organization



Questions?


