
Set Operations on Polyhedra using Binary
Space Partitioning Trees

Vikram Chandrashekhar
Group 16

Project Summary

- Orthoses for cerebral palsy
patients

- Fusiform developed a process to
reduce waste, reduce time and
increase efficiency of orthotic
design/fabrication

- Currently: ~10 hour process to
create orthotic in SolidWorks

- Browser based software to add
pre-designed orthotic components

Browser Based Constructive Solid Geometry for Anatomical Models

Paper
Thibault, W. C., & Naylor, B. F. (1987). Set operations on polyhedra using binary
space partitioning trees. ACM SIGGRAPH Computer Graphics SIGGRAPH
Comput. Graph., 21(4), 153-162. doi:10.1145/37402.37421

Goal of Paper:
● Use binary space partitioning trees (BSPTs) to perform constructive solid

geometry (CSG) operations
○ Why: BSPTs are much faster and more unified than other methods to compute CSG

operations

Application to Project:
● Modify current CSG package to optimize nodes of BSPT

Some terms and Definitions
● Boundary representation (B-rep) - A d-dimensional solid represented as

a collection of (d-1)-polyhedra (also called faces) represented by (d-2)-
polyhedra until d = 0

● Binary space partitioning tree (BSPT) - a binary tree whose non-leaf
nodes are labeled with hyperplanes and whose leaf nodes correspond to
cells of a partitioned d-space.

● Cell - area enclosed by splitting hyperplanes
● Hyperplane - a (d-1)-dimensional subspace in d-space (e.g. a 2D plane in

3D space but generalized to any higher-dimensional space)
● Half-space - either of the 2 parts into which a (hyper)plane divides a d-

dimensional space

BSPT terminology
● Each internal node v of

BSPT represents region of
space R(v)

● R(v) is the intersection of
open halfspaces on the path
from the root to v

● Associated with partitioning
hyperplane Hv

● 3 regions
○ R(v) ∩ Hv

+

○ R(v) ∩ Hv
-

○ R(v) ∩ Hv
● Sub-hyperplane (SHp(v)) -

R(v) ∩ Hv

Generic BSPTs
● Recursive, hierarchical

partitioning of d-dimensional
space

● Nodes store splitting
hyperplanes

● Distinction between halfspaces
determined by normal vector -
arbitrary choice

● Right subtree - region lying on
side pointed to by normal

● Left subtree - the other region

B-rep -> BSPT
● Requirements

○ All points on boundary of polyhedra lie
in sub-hyperplanes of the resulting tree

■ Embed faces
○ Correct classification of cells

■ “In” vs “out”
● Algorithm

○ Choose hyperplane H
○ Partition faces left of, right of, or

coincident with H
■ When empty, we know that region

is homogenous
○ Recursively apply to left and right face

subtrees

Inserting a face
1. Let v be some node in the tree (initially equal to root) and f be some face

to add
2. Partition f by Hv and pass the part of f lying to the left of Hv to v.left and

part of f lying to the right to v.right
3. Repeat this process until part of f reaches a leaf (create a new node)

Using this process one can go from a trivial BSP to BSP tree representing
polyhedra

Evaluating Set Operations
● Regular set - set that

consists of its interior and its
boundary

● Partition space into regions
such that at least one
operand is homogenous in
each region (e.g. ext(S) or
int(S))

Evaluating Set Operations
Given BSP tree T’ representing
polyhedron T and B-rep (or BSPT) B’
representing polyhedron B.
Perform T -* B:

1. Insert all faces of B’ into T’
2. If at some node v, no part of B’ is

found to lie on one side of Hv (let’s
say left) then R(v.left) is
homogenous

3. Determine whether the region is
“in” or “out” of B

Evaluating Set Operations
4. Determine what to do with the

appropriate subtree (v.right or v.
left) given the operation and type
of region

5. If v is a leaf, then R(v) is
homogenous and will either retain
T’s value or B’s value

Evaluating Set Operations
● Perform T -* B

CSG Trees
● A binary tree in which the

internal nodes represent
(regularized) set operations and
leaves are instanced primitives

● Easier visual representation for
complex objects

● Not particularly useful
computationally (need to convert
to BSPT)

BSP Tree Reduction
● Eliminate certain nodes without changing the set - reduction in memory
● Both subtrees of node v are cells with identical values

○ Replace subtree with single value

● Node that has one child and contains no part of the boundary (u)
○ Remove this node

Conclusions
● Similarity between octrees and BSP trees

○ Recursively subdivide space
○ Assign values to leaves
○ Dimension independent

● Key difference: BSPT hyperplanes do not have to be axis-aligned
○ Octrees tend to be more verbose as a result (more memory)

● B-rep algorithms - independent search structure, set operations, and
visible surface determination

● BSP tree -> all unified in a single structure
○ reduces the conceptual complexity and complexity of implementations

Assessment
Pros:

● Very detailed
● Not too complicated to follow
● Many diagrams to illustrate

concepts
● Clear pseudocode

Cons:

● Could have provided more
detail as to why approach is
better

● Could have used better
organization

Questions?

