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Speeded-Up Robust Features (SURF)

I. Introduction

SURF (Speeded-Up Robust Features) can be described as a feature extraction and point 
correlation framework for use with two-dimensional images. Developed by Herbert Bay, PhD at 
ETH Zurich, SURF interest points are designed to be in-plane rotation invariant, robust to noise, 
and extremely fast to calculate. The overall framework can be divided into three phases: interest 
point detection, interest point description, and interest point matching.

II. Interest Point Detection

One of the reasons that the SURF paradigm is so fast to compute is the image space that all 
computations are executed in. Instead of traditional RGB or grayscale images, SURF interest 
points are determined in the integral image space, IΣ(x), where the value of any point x = (x, y) 
on the integral image is equal to the sum of the intensities of the area of the rectangle formed 
between x and the origin in the grayscale image. Succinctly, this can be quantified by the 
following equation (1): 

       (1)

While this image space transform is costly to compute, it can be parallelized to decrease overall 
computation time. Additionally, this upfront cost significantly reduces further processing time. 
This is because regions of integral images can be efficiently characterized given simply the 
values at its vertices. This fact allows for efficient detection of blobs, or areas of constant 
contrast and color.

The interest point detection portion of this framework revolves around the detection of these 
aforementioned blobs. In previous work, efficient detection of image blobs can be achieved by 
analyzing the Hessian of the image. As the Hessian (H) is a representation of the curvature of 
the underlying image, maximal values of the determinant of the Hessian represent regions of 
constant structure (color, contrast, etc.) within the image. This is the fundamental principal 
behind Hessian-Laplace detectors. Interest points are defined to be these local maxima of the 
determinant of the Hessian of the image. Generally, before this computation, the original image 
is actually convolved with a second-order Gaussian derivative of some standard deviation in 
order to illicit the characteristic blurring effect that reduces image detail. This convolution 
reduces noise in the image by smoothing edges and softening colors.

While the Hessian-based detection is an efficient way to produce regions of interest, it is 
computationally expensive and, therefore, ill-suited for online use. In order to compensate for 
this, the SURF framework replaces these second-order Gaussian filters with symmetric box 
filters. By convolving the original image with these x-, y-, and xy-direction box filters and, 
afterwards, taking the partial derivatives, it possible to cheaply compute an approximate 
Hessian matrix. As these matrices are simply approximations of one another, the energy of their 
Gaussian kernels is not conserved. As such, the determinant of the Hessian must have a 
weighting factor applied. This results in the following equation (2):
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              (2)

Dxx, Dyy, and Dxy refer to the filter responses of the image with the x-, y-, and xy-direction box 
filters respectively. In order to preserve the Gaussian kernel energy, the weighting factor, w, was 
computed to be 0.9.

In order to match these image regions across different scales, a pyramidal scale space is 
constructed. This scale space simulates viewing the image from different distances away. 
Traditionally, this scale space is built iteratively by applying a Gaussian filter, downsampling that 
image, and repeating this process until a limiting image size is reached. However, this 
methodology is slow because the process is serial in nature, with each successive level of the 
pyramid being dependent on its previous level. Instead, the SURF framework proposes an 
alternative: parallel upscaling. Because the Gaussian filters can be sufficiently approximated 
with symmetric box filters, it is possible to represent any scale (level of the pyramid) as the 
convolution of the original image with a filter of size N x N pixels. Because these filters can be 
made arbitrarily large (smallest possible size is 9 x 9), these filters are able to represent 
distances arbitrarily far away. Additionally, due to the filters’ symmetry, propagating the set of 
convolution filters is fast. As such, the pyramidal scale space can be constructed in parallel, 
applying a set of filters to the original image where the dimension of the filter determines its level 
in the pyramid (9 x 9 is bottom level).

Once regions can be matched through image and scale space, the localization becomes quite 
easy. The SURF framework uses a non-maxima suppression of a 3 x 3 x 3 neighborhood. 
Essentially, the gradient of the determinant of the approximated Hessian is followed and, any 
region of the image that is not considered a local maximum is set to zero. At the end of this 
process, the regions of the image with nonzero values are determined to be interest points.

III. Interest Point Description

Once interest points can be localized, the SURF framework funnels these points to its 
descriptor. The interest point description portion of the framework is a two-step process: 
orientation assignment and feature extraction. It is in this section where the SURF framework 
really provides novelty, implementing a feature description framework fundamentally different 
from current viable alternatives, including SIFT and GLOH.

Because the framework aims to produce features which are in-plane rotation invariant, the 
descriptor requires a way to normalize the point orientations. To this effect, the descriptor 
assigns a dominant orientation to each interest point using the horizontal and vertical Haar 
wavelet response. Essentially, the horizontal and vertical Haar wavelets are convolved with a 
circular neighborhood around an interest point. This will generate horizontal and vertical Haar 
wavelet responses for each pixel, dx and dy respectively. These responses are smoothed for 
noise reduction and, afterwards, these responses are plotted versus one another. On this plot, 
each pixel of the original interest point will have xy-coordinate (dx, dy).

Once this response plot is generated, a sliding window of size π/3 is created. Within the sliding 
window, a local orientation vector is generated through the summation of all x- and y-
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coordinates encapsulated in the window. That is to say, the local orientation vector o can be 
described by the following equation (3):

       (3)

The dominant orientation vector for the interest point then is simply the largest of all such 
vectors across all such windows.

Once orientation is determined, normalized features can be extracted from the interest point. In 
order to do this, and object-aligned square neighborhood around the interest point is first 
defined. This neighborhood’s size is dependent on the scale of image, 20s. Once a 
neighborhood is defined, this neighborhood is subdivided into a 4 x 4 grid. An axis-aligned Haar 
wavelet response (both horizontal and vertical) are both computed against the region in each 
subdivision. From each subdivision, twenty-five equally spaced points are subsampled to 
characterize the that region. The twenty-five points are used to compute a local feature vector 
composed of four features each. This local vector can be seen illustrated in equation (4):

       (4)

The pure summation features serve as a metric for maximal intensity in either direction while the 
absolute value summation features serve as a metric for pattern polarity. By concatenating 
these local feature vectors generated from each subdivision, one can produce the 
comprehensive, 64-element feature vector that describes the interest point and surrounding 
neighborhood.

IV. Interest Point Matching

Once interest points have been localized and characterized, the SURF framework begins to 
build a correspondence between interest points in each image frame. To do this, the framework 
simply computes a nearest neighbor search in the feature space. As possible quantifiers for 
“nearest”, the authors suggest either Euclidean or Mahalanobis distances. For this particular 
implementation, sensor precision was assumed to be uniform and, as such, Euclidean distance 
was sufficient.

In order to efficiently parse the spatial data structure containing the interest points, the SURF 
framework utilizes a clever trick: Laplacian indexing. In integral image space, the trace of a 
Hessian matrix, or the Laplace, provides meaningful information on the blob-to-background 
relationship in the underlying neighborhood. More specifically, the sign of the Laplace is an 
indicator of the relative brightnesses between the blob and the background. A positive Laplace 
indicates a bright blob on a dark background, while a negative Laplace indicates a dark blob on 
a bright background. Given this information, it is possible to use the Laplace of the interest blob 
as an intuitive hyperplane to divide a spatial data structure (e.g. KD Tree) along. This allows for 
more efficient elimination of obviously erroneous matching candidates in the new frame. 
Additionally, this indexing comes at no extra cost as the Hessian is already computed earlier in 
the detection phase in order to localize these interest points.
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V. Validation Results

In order to validate the efficacy of this framework, the authors chose to quantify two important 
metrics: the repeatability of the detector and the discriminative power of the descriptor. The 
repeatability was defined as the percentage of interest points originally localized in one camera 
viewpoint that were again localized in another camera viewpoint. The discriminative power was 
defined as the detection-false positive relationship generated when using a simple bag-of-words 
classifier. In effect, both of these metrics are measures of how robust the features generated by 
the SURF framework are. The testing scenarios and results will be discussed at length below.

In order to quantify the repeatability of the detector, interest points were generated on four 
different sets of images: Graffiti, Wall, Bikes, Boats. Each set of images was essentially a series 
of snapshots of a single object from different angle viewpoints. This angle only varied around a 
single axis and, as such, it was possible to map the repeatability metric to an angle offset. In this 
case, they considered the 0º offset to be the ground truth and compared the interest points 
generated in every other image to those generated at 0º. Repeatability results were generated 
for the SURF’s Fast Hessian 9x9 variant (FH-9) as well as SURF’s Fast Hessian 15x15 variant 
(FH-15). Along with those, a Difference of Gaussians (DoG), Hessian-Laplace, and Harris-
Laplace detector were all tested as well. In all the given testing scenarios, the FH-15 detector 
performed the best with ~78% maximal repeatability at 20º offset. Competitively following 
slightly behind, the FH-9 detector also reaches a maximal repeatability of ~75 % at 20º offset. 
While repeatability decreased as the offset angle increases, which is to be expected, the 
repeatability percentage for both FH detectors remained greater than 50 % up to a 50º offset. 
This is markedly better than the behavior of its competitors.

In order to quantify the discriminative power of the descriptor, the features generated by the 
descriptor would be used as features for a publicly available bag-of-words classifier. Using a set 
of four hundred images, supervised training of the classifier was performed using the first two 
hundred images and testing was performed on the second two hundred. The intuition behind 
this experimental set up is that the more characteristic the feature vector produced by the 
descriptor is, the more accurate the classifier should be. This accuracy can be understood as 
the ratio between the number of false positives and the total number of detections. For this test, 
the SURF-128 descriptor was compared against SIFT and GLOH. According to these results, 
the SURF-128 descriptor’s features are much more characteristic of the underlying image 
space. This is evident by the near-ideal shape of the produced classification curve. For 
SURF-128 , the false alarm probability didn’t go above 0.1 until the detection probability reached 
~0.85. This is a leaps and bounds better than the SIFT or GLOH results, ~0.55 and ~0.5 
respectively. Of course, this is using interest points generated from the SURF detector and so 
there is an inherent bias. When using simply random edge pixels, the SURF-128 performs only 
marginally better than SIFT, however, there is still a large increase in performance when 
compared to GLOH.

VI. Opinion and Conclusion

In my opinion, this paper does many things very well but still has areas it could have improved 
upon. Of the things it does well, I believe the most important is that the narrative is, for the most 
part, self-contained. It is completely possible to follow the logic of the SURF- framework without 
searching deeply through its references. Another thing that is done well is the inclusion of an 
applications portion to the original article. This portion exemplifies how SURF can be used in 
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common computer vision tasks, such as 3D scene reconstruction or object recognition, and 
adds much needed context to the framework. Additionally, this section serves to illustrate the 
immediate impact the framework can have on the field. Finally, I appreciate the honesty of the 
article. In its introduction, the framework professes robust and speedy feature calculations and 
that is exactly what is delivered.

Of the things that can be improved with this paper, I believe the most important to be a thorough 
exploration of the speed metrics. The hallmark of SURF is its speed and, unfortunately, in this 
paper, the speed seems to be abstracted into relativities. SURF is constantly claimed to perform 
faster than various other frameworks, however, no quantitative assessment of these statements 
are given. This seems to be an inexact and vague qualitative assessment instead. Additionally, 
the validation experiments for the descriptor seems shallow. They only used a single data set 
(e.g. Caltech Airplanes and Backgrounds) to validate the efficacy of the classifier and I believe 
that that is limiting. It would have been preferable to perform the same experiment over three or 
four data sets, much like the detector validation. For future work, it would be interesting to see 
the SURF framework applied to very different data sets.
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