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Technical Summary 
 
Introduction and Background 

 
In medicine and industry1, there is a need for flexible multi-
robot platforms that allow for independent placement of 
multiple robotic manipulators. The Computer Aided Medical 
Procedures research group at Johns Hopkins University has 
developed a multi-robot surgical platform with two KUKA iiwa 
robotic manipulators. Each KUKA system is built into a 
mobile workstation, which makes them easy to transport and 
less obtrusive in an operating room environment. Instead of 
an externally mounted tracking camera, each KUKA is 
mounted with an Intel RealSense RGB-D camera. 
 
One surgical application which has been explored with this 
platform is ultrasound guided dual-robotic needle 
placement2. In this surgery, one robotic manipulator controls 
an ultrasound probe to capture patient anatomy, while the 
other arm precisely inserts a needle. In such a procedure, 
precise robot to robot coordination is key. For platforms with 
rigidly connected robotic arms, the transformation between 
the arms’ reference frames can be assumed constant, and 
need only be calibrated once. For this flexible platform, 
because each robot base can be positioned independently, 
base to base calibration must be performed frequently. Thus, 
there is a need for an efficient method to precisely calibrate 
multiple robots.  
 
The objective of this research is to explore a variety of robot-
to-robot calibration methods and validate their efficacy for 
use in dual-robotic surgeries and experiments. 
 
 

Figure 1: CAMP lab’s dual robotic platform with two KUKA 
iiwa robotic manipulators. 
 
 

Hardware 
 
CAMP lab’s dual-robotic platform has two KUKA iiwa 
manipulators. Each robot has an Intel F200 RealSense 
RGB-D camera, capable of capturing depth information 
through infrared structured light as well as high definition 
video. For these experiments, the two KUKA systems are 
positioned facing each other approximately 1 meter apart. In 
this configuration, the workspace is the half meter platform 
between the two KUKAs, which is meant to simulate the 
operating room table. 
 
Setup 
 
There are two calibration steps which must be performed 
before the robot-to-robot calibration. First, a monocular 
camera calibration must be done to obtain intrinsic 
parameters and to undistort images. Second, it is necessary 
to determine the hand-eye transformation that relates a 
robot’s camera space and the robot end-effector frame of 
reference. In figure 2 below, this is represented by GHC. 
 
In the envisioned workflow for this dual-robotic system, it is 
assumed that the cameras and camera mounts remain 
constant, such that repositioning the robot bases does not 
change any of these parameters. Thus, camera calibration 
and hand-eye calibration can be performed in advance and 
do not disrupt the operation’s workflow. For each of the 
robot-to-robot calibration methods, it is assumed that the 
camera parameters and hand-eye transformations are 
already known. 
 
 
 

 
 
Figure 2: Schematic overview of the dual robotic platform 

and the calibrations used to determine each transformation. 
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Monocular Camera Calibration 
 
This procedure uses a regular pattern of known dimensions 
to determine the intrinsic parameters of the camera5. For 
these experiments, a checkerboard is used as the calibration 
object. Multiple images of the calibration object are taken 
from different viewpoints, and a maximum-likelihood 
estimator is applied to solve for the camera intrinsics, 
extrinsics and distortion coefficients. Intrinsic parameters are 
defined as the principal point offset, skew, and focal length. 
Extrinsic parameters are the three-dimensional poses of the 
camera with respect to the calibration object reference frame 
for each image. These are later utilized in the hand-eye 
calibration. This project uses the camera calibration 
implementation found in MATLAB’s Computer Vision 
Toolbox6. 
 
 

 
Figure 3: Matlab camera calibration application detecting 
corners (left) and extrinsic camera data, i.e. camera poses 
with respect to the checkerboard based frame (right). 
 
 
Hand-Eye Calibration 
 
The hand-eye calibration finds the transformation between 
the robot end-effector and the camera frame. For each 
checkerboard image, the board pose in the camera frame 
(cHcb,i) is matched with the corresponding end-effector pose 
in the robot’s base frame (bHg,i). Using these transformations, 
an AX=XB problem can be set up to solve for the constant 
transformation between the camera space and the end-
effector space (gHc)8. The method used in this project to 
solve this set of equations is a nonlinear least-squares 
optimization9. The implementation of this algorithm is 
available open-source from the California Institute of 
Technology’s Computer Vision Toolbox7. 
 
Robot-Robot Calibration 
 
Three separate calibration algorithms were developed and 
explored throughout the course of this research: 
checkerboard, ARToolKit markers, and RGB-D image 
feature and depth information. 
 
A. Checkerboard 

 
In Monocular Camera Calibration, it is outlined how to 
compute the pose of a checkerboard with respect to a 
camera (the extrinsic parameters). Using this, along with the 
hand-eye transformation and the forward kinematics of the 

robot, the transformation from the robot base frame to the 
checkerboard frame can be computed. Once this is done for 
both robots, the base to base transformation can be 
computed through the checkerboard frame. Multiple pictures 
of the checkerboard are taken from a wide range of angles 
to improve the accuracy of the calibration. 
 
 

 
Figure 4: A selection of checkerboard calibration images. 
 
 
B. ARToolKit Markers 
 
ARToolKit is a computer vision framework which provides a 
host of visually distinctive markers as well as software that 
can recognize and determine their 3D pose with respect to 
the camera. This calibration method determines the robot-to-
robot transformation through a commonly observed 
ARToolKit marker, following a similar procedure to the 
checkerboard calibration. ARToolKit supports a host of 
different markers including single markers and multimarkers. 
A multimarker is an array of single markers arranged in a 
fixed, known orientation to one another. ARToolKit identifies 
all visible markers in an image and uses any observed 
markers to estimate the pose of the multimarker array as a 
whole. Multimarkers provide more accurate pose estimation 
because of the increased number of feature points.  
Multimarkers need not be planar, and ARToolKit provides 
cubic templates. A multimarker with orthogonally oriented 
markers could provide better rotation estimation than a 
simple planar multimarker or checkerboard. For this robot-
to-robot calibration method, three marker modalities were 
tested: a single marker, a 4x3 planar multimarker, and a non-
planar orthogonal multimarker. 
 
 

 
Figure 5: Three ARToolKit markers used for calibration: a 
single “Hiro” marker, a 4x3 multimarker array, and a non-
planar multimarker with three orthogonal markers. 
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ARToolKit applications using multimarkers require a .dat file 
specifying the orientation of the markers with respect to each 
other. This is easy to determine for planar multimarkers, but 
difficult for non-planar ones. For simple augmented reality 
applications, minor inaccuracies in this .dat file will not 
matter, but for precision calibrations they certainly will. This 
makes ARToolKit’s foldable paper cubes undesirable, as 
they will easily warp and deform. A great deal of care was 
put into the manufacture of this test’s orthogonal multimarker 
so it would be structurally stable and accurate to the .dat file. 
Furthermore, rather than use a cube, the robots were 
restricted to viewing the same three markers on one corner. 
This ensured that any errors from inaccuracy in the .dat file 
would be uniform for both robots.  
 
C. RGB-D Image Feature and Depth 
 
The Intel RGB-D cameras used in this system provide 
traditional RGB images along with depth information using 
structured light deformation. This last calibration method 
explores the efficacy of using this feature of the cameras to 
drive the calibration. To do this, interest points are first 
determined in the 2D image space using the SURF 
algorithm10. This provides a set of discriminatory features in 
the calibration scene. In this implementation, these interest 
points can be extrapolated into a 3D point cloud through 
inverse ray-casting using the corresponding depth image 
value to recover the scale.  
 
Furthermore, because of the high discriminatory power of 
SURF features, it is possible to track an interest point 
through different frames of data. This makes it possible to 
build a point-to-point correspondence from different vantage 
points. Using a Procrustes method, it is possible to determine 
c1Hc2, the transformation between camera frames for each 
image pair. Then, by using the corresponding robot poses, it 
is possible to determine the overall robot-to-robot transform 
by closing the transformation loop. This is done for each 
image pair with sufficient feature overlap and, the final base 
transform is the average of these pairwise transforms. 
 
 

 
Figure 6: Two images of the same calibration scene taken 
from the two robots. General SURF interest points, interest 
points shared between the two images, and inliers of those 
shared interest points are marked as such. 
 
 

 
Figure 7: The extrapolated 3D interest point clouds of the 
calibration scene taken from two robot vantage points. 
General SURF interest points, interest points shared 
between the two images, and inliers of those shared interest 
points are marked as such. 
 

Experiments and Results 

 
Description of Data Sets 
 
Checkerboard calibration was tested with two different data 
sets. Both sets had images taken at 30 positions for each 
robot. The first set had many images taken at low angles 
around the board. The second had fewer low angle shots. 
For both checkerboard calibrations, hand-eye calibration 
was performed using the same image sets. 
 
For each of the three ARToolKit marker configurations, 
marker and robot pose data was recorded at 10 different 
poses for each robot. In the case of multimarker tests, data 
was only captured at positions where all markers in the 
multimarker were successfully detected. In the case of the 
non-planar multimarker, this restricted the range of robot 
positions where data could be recorded. For the single 
marker and 4x3 multimarker array, data was captured at 
positions distributed all around the marker just as was done 
for the checkerboard. Checkerboard dataset B was used to 
generate the hand-eye transformation used in these trials. 
However, additional hand-eye transformations were 
generated using the pose data from the ARToolKit data sets 
themselves. The results of these calibrations with both hand-
eye methods are listed below.  
 
Two boxes with colorful writing and designs were used to 
give distinct features for the RGB-D Depth and Feature 
calibration. For each robot, 16 RGB and depth images were 
taken at different angles towards the scene. These images 
were captured with the Intel RealSense camera’s color and 
depth overlay mode, which merges RGB and depth 
information. For this reason, a separate set of checkerboard 
images had to be captured to compute a hand-eye 
transformation. 
 
Establishing a Ground Truth Transformation 

 
To assess the accuracy of each of these methods, a ground-
truth robot-to-robot transformation was needed. This was 
determined using the following procedure, which is also 
described by Gan Yahui and Dai Xianzhong1. First, each 
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KUKA robotic manipulator was fitted with a rigid pointer. The 
position of the pointer tip was determined using KUKA’s built 
in four point pivot calibration program. First, one robot was 
moved to an arbitrary point in the work space. Then the 
second robot was manually maneuvered so that both pointer 
tips were exactly touching. The three dimensional position of 
both pointer tips in each robot’s reference frames was 
recorded. This was repeated many times at positions evenly 
distributed around the workspace. The pointer tip positions 
create two point clouds, one in each robot’s base frame, with 
known point to point correspondence. The ground truth 
robot-to-robot transformation was then determined through a 
Procrustes alignment of the two clouds. 
 
For each of the calibration methods above, the computed 
robot-to-robot transformation was compared to this ground 
truth transformation for both linear and angular error. 
Additionally, for each calibration transformation, the set of 
robot 2 pointer tip points were projected into the robot 1 base 
frame using said transformation. For a perfect calibration, 
these points should exactly coincide with the pointer tip 
positions recorded with robot 1. The mean linear area for the 
projected ground truth points was recorded as another metric 
for calibration accuracy. 
 
Analysis of Results 
 
The most accurate calibration was achieved using 
checkerboard dataset A. It is believed that the wide range of 
angles captured in the image set allowed for a more precise 
determination of the board’s position with respect to each 
robot. Checkerboard dataset B had fewer low angle shots, 
and had greater error for the linear component of the 
transformation. However, the error for sampled points in the 
workspace was not significantly worse. While low angle 
shots may help determine the board pose, they do have 
some risks. The high projective distortion may make it 
difficult for computer vision applications to detect the board. 
For checkerboard dataset A, two images were rejected 
because the board was not detected. So a middle ground of 
camera angles is preferable. 

In general, the mean linear error for points sampled in the 
workspace was typically much less than the transformation 
linear error. This is reasonable, as the transformations are 
based on observations of calibration object points in the 
workspace. Some component of the angular error in each 
transformation compensates for the linear error (or vice 
versa) so that the error is lower for points in the workspace. 
 
The single ARToolKit marker gave a less accurate 
calibration than the checkerboard. This should not be 
surprising as the checkerboard pose is estimated using 42 
feature points, each inner corner, while ARToolkit estimates 
the marker pose using only 4 points, the corners of the 
marker. However, the 4x3 multimarker’s pose is estimated 
using 12 markers and thus 48 feature points. The 4x3 
multimarker did give one of the best calibrations, but it was 
not as accurate as the checkerboard. Note that the 
checkerboard data sets used 30 positions, while the 
ARToolKit calibrations took only 10. A 30 position calibration 
with the 4x3 multimarker could be comparable to the 
checkerboard calibration. 
 
For the orthogonal multimarker, the range of robot positions 
which could observe all three markers was severely 
restricted, and pose data could not be captured all around 
the marker. This resulted in a significant linear 
transformation error. However, as expected, the rotational 
error was lowest for the orthogonal marker. This 
demonstrates the importance of capturing data from poses 
all around the calibration object.  
 
Interestingly, for both ARToolKit multimarkers, there was a 
significant improvement in transformation linear error when 
using a hand-eye transformation generated from the same 
dataset. This effect is particularly pronounced for the 
orthogonal multimarker, which had a threefold drop in linear 
error. This may simply be an experimental artifact, or it could 
be that the least squares estimator of the hand-eye 
calibration helps to compensate for error in the ARToolKit 
marker poses. 
 

 

Calibration 
Method [#images/bot] 

Hand-eye 
Calibration [#images/bot] 

Sampled Point Mean 
Linear Error (mm) 

Transformation 
Linear Error (mm) 

Transformation 
Angular Error (deg) 

Checkerboard A [30] Checkerboard A [30] 2.7285 2.5994 2.5065 

Checkerboard B [30] Checkerboard B [30] 2.9312 5.3538 2.3211 

ATK single marker [10] Checkerboard B [30] 3.8115 6.2353 2.3956 

ATK single marker [10] ATK single marker [10] 4.9717 8.9781 1.8524 

ATK 3x4 multi [10] Checkerboard B [30] 4.4614 7.7350 2.5708 

ATK 3x4 multi [10] ATK 3x4 multi [10] 3.6976 3.5423 2.7076 

ATK non-planar [10] Checkerboard B [30] 8.1168 24.9807 1.7201 

ATK non-planar [10] ATK non-planar [10] 6.0413 8.0032 2.0756 

RGB-D Features [16] Checkerboard C [40] 34.7979 51.7487 8.4658 

 

Figure 8: Table of calibration experiment results. For each calibration, the hand-eye transformation used to compute final base 

to base transform is also listed. Sampled point mean linear error is the mean displacement between ground-truth points once 

projected into the same base frame. Transformation linear error and transformation angular error are determined with respect 

to the ground truth transformation described in the section above. 
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Unfortunately, the RGB-D features and depth calibration 
method is not nearly accurate enough for medical purposes. 
With a mean linear error of 34.8 mm between corresponding 
points, the RGB-D features and depth calibration is by far the 
least accurate of the methodologies tested. This was 
surprising as the calibration contains multiple layers of outlier 
rejection, imposing thresholds for image feature overlap, 
feature inlier percentage, and sum of square distances in the 
camera to camera transformation. The most significant 
contributor to this point-to-point error is the linear 
transformation error, 51.7 mm, most of which is generated in 
the y-direction. In the calibration set tested, the y-
translational difference between the ground truth 
transformation and the computed transformation is 53.3 mm. 
This is in comparison to the relatively low 3.39 mm and 8.61 
mm in the x- and z-translational differences. While significant 
time was spent attempting to discover the source of this 
unbalanced error, currently, the source remains unknown.  
 
Similarly, the rotational error, 8.5 degrees, is much higher 
than that of the other algorithms. That being said, this high 
rotational error may partially explain the higher linear 
distance errors. Like the checkerboard calibration, there is a 
noticeable increase in accuracy between two points in the 
workspace the closer the points are to the center of the 
calibration scene. The farther out a point is from this center, 
the more the rotational error affects the linear distance 
between two points. As such, it is feasible that this calibration 
can be improved by using multiple different calibration 
locations around the workspace. 
 
Conclusions 
 
In this paper, the efficacy of three distinct calibration 
methodologies has been explored. For medical procedures 
that require sub-millimeter accuracy, the checkerboard 
calibration has proven to provide a viable alternative to 
industry standards. However, this comes with the caveat that 
you are operating near the center of calibration. 
Furthermore, if a calibration multimarker is manufactured to 
have very precise relationships between each single marker 
in the grouping, the ARToolKit calibration method seems to 
have promise as a viable calibration alternative as well. 
Unfortunately, the RGB-D features and depth calibration is 
far too inaccurate for medical purposes, however, industrial 
procedures which require accuracy on the order of 
centimeters may find this method useful. 
 
The calibration methods which best meet the need for quick 
but precise robot-to-robot calibration are the checkerboard 
calibration and the ARToolKit multimarker calibration. For 
both of these methods, it is recommended that 30 poses be 
recorded for each robot, which could be done automatically 
before the start of an operation. However, these methods 
cannot be applied to dynamically update the robot-to-robot 
transformation during the surgical procedure. To achieve 
that, external tracking hardware would still be necessary. 
 
 
 
 
 

Management Summary 

 
Who Did What 

 
The initial setup calibrations (camera and hand-eye) were 
covered by both Christopher and Matthew. The 
checkerboard calibration was also jointly handled. Testing of 
ARToolKit calibration methods were performed by Matthew, 
while the RGB-D depth and features calibration was handled 
by Christopher. Ground truth point collection and error 
analysis was done by Matthew. 
 
Accomplished Versus Planned 
 
We succeeded in developing and testing three different 
methods of robot-to-robot calibration. Additionally, we 
created a comprehensive code package to perform and test 
the various calibration methods. This package is available on 
the course wiki under the “Other Resources and Project 
Files” section. 
 
We were able to produce calibrations with accuracy on the 
order of millimeters. While a greater degree of accuracy is 
necessary for surgical applications, we are still satisfied with 
this result given how many opportunities there are for error 
to enter the system. To compute the base to base 
transformation, there are six intermediate transformations: 
two for robot kinematics, two for hand-eye transformations, 
and two for camera to calibration object transformations. 
 
The accuracy of the RGB-D feature and depth calibration 
was disappointing, however, it gave good insights into the 
feasibility of this methodology in medicine and industry. 
While medical applications require more precision than what 
was provided, industrial applications may still be feasible. 
Processing these sparse and correlated point clouds is fast 
and provide accuracy on the order of centimeters. Therefore, 
this methodology may be of use in other real-time 
applications, such as autonomous mobile robot navigation. 
 
We did not have time to develop a fourth planned calibration 
method, which would use only the depth cloud generated by 
the Intel RealSense camera. However, another group has 
done work relevant to this calibration. Project 06: Augmented 
Reality for Orthopedic and Trauma Surgeries has done some 
work with aligning dense partially overlapping point clouds 
using Fast Point Feature Histograms.  
 
Early on, we planned to perform some needle tracking 
experiments as a demonstration of the dual-robotic platform. 
However, over time this became a low priority and was 
ultimately canceled. 
 
Future Work 
 
One course for further research would be development of a 
depth only calibration method using the Intel RealSense 
cameras. Based on our results with the RGB-D depth and 
feature calibration, we do not expect that a depth only 
calibration would produce an accurate transformation, 
however, with a sophisticated point cloud alignment 
algorithm and the greater density of the full depth cloud, it 
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may be possible. Some avenues to consider may be using 
Fast Point Feature Histograms to thin the depth cloud while 
maintaining discriminatory integrity or an ICP variant that 
optimizes a global energy function. 
 
Additionally, the RGB-D features and depth calibration may 
be further improved by using multiple micro-calibration 
scenes scattered across the workspace for base-to-base 
calibration. In theory, this should reduce the rotational error, 
which may limit its propagation through the linear distance 
error. That being said, a similar methodology would work for 
all of the algorithms provided and, as such, the RGB-D 
features and depth calibration would still be the least 
accurate option. 
 
It would be good to explore ARToolKit multimarker 
configurations that combine the strengths of the markers 
tested. A non-planar multimarker with several markers on 
each surface could provide an excellent calibration. This 
could be built as a full cube or just a concave surface. It 
would be best if these multimarkers were manufactured by a 
more precise mechanism, to minimize errors in the 
configuration file which describes the multimarker geometry. 
 
What We Learned 
 
We have gained experience working with many calibration 
methods, including camera, hand-eye, and pivot calibrations. 
We’ve also learned many new things about computer vision, 
like SURF features and marker tracking with ARToolKit. We 
had to learn new things about projective geometry and 
camera models to create our calibration programs. 
 
We learned a great deal from the challenges we faced during 
this project. For real robotic research, one of the most time 
consuming things is getting all the hardware working. 
Trouble shooting is inevitable. Our mentors were of immense 
help when we experienced these technical problems. 
Furthermore, for calibration tasks, explicitly stating the 
spatial relationship between reference frames is crucial. 
Wrong assumptions on frame orientations propagate to the 
final transformation, and it is difficult to track down where 
these errors began. 
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