Computer Aided Medical Procedures **Project Checkpoint Robotic Ultrasound Needle Placement and Tracking: Robot-to-Robot Calibration**

Project 17: Christopher Hunt & Matthew Walmer Mentors: Bernhard Fuerst, Javad Fatouhi, Risto Kojcev, Nassir Navab

Background

In medicine and industry⁷, there is a need for flexible multi-robot platforms that allow for independent placement of multiple robotic manipulators.

Background

- CAMP lab has designed a novel multirobot platform.
- This mobile platform provides flexibility in the operating room environment.
- For multi-robot surgical procedures, precise coordination is key.
- Base to base calibration must be done frequently, because the platform is mobile.
- We need an efficient method to precisely calibrate multiple robots.

Objective

Explore a variety of robot-to-robot calibration methods and validate their efficacy for use in dual-robotic surgeries and experiments.

Plan

From Dual-Robot Ultrasound-Guided Needle Placement⁵

Plan Overview

1. Checkerboard Calibration

3. RGB-D Features and Depth

Background

Plan

Dependencies

2. Visual Marker Tracking Calibration

4. RGB-D Depth-Only

Validation

Time Table

Calibrations

Deliverables

Dependencies

Туре	Dependency	Status				
	KUKA iiwa Dual Robotic System	\checkmark				
	3D-Printed Intel Camera Mounts	\checkmark				
	Access to Mock OR and Robotorium	\checkmark				
Hardware	Calibration Checkerboard	\checkmark				
	ARToolKit Markers	\checkmark				
	Feature Calibration Objects	\checkmark				
	Improve KUKA Pointer	Mentor				
	ImFusion, PCL, ARToolKit	\checkmark				
Software	KUKA Sunrise	\checkmark				
	Intel RGB-D Camera SDK	\checkmark				
	Risto's Needle Tracking Algorithm	\checkmark				
Other	Tissue Sample for Ultrasound Testing	Mentor or Butcher				
a W						
A Backgrou	und Plan Dependencies Deliverables	Calibrations Validation Ti				

Deliverables Complete In Progress Low Priority

	Fully documented hand-eye calibration program that produces the transformation from a rigidly attached camera to the robot's end-effector, ${}^{g}H_{e}$									
Minimum	Fully documented checkerboard calibration program that produces the transformation from the second robot base to the first robot base, $^{\rm b1}{\rm H}_{\rm b2}$									
Expected	Va	Validation experiment protocol and report of results								
	Fully documented ARToolKit calibration program that produces the transformation from the second robot base to the first robot base, ^{b1} H _{b2}									
	Fully documented RGB-D features and depth calibration program that produces the transformation from the second robot base to the first robot base, ^{b1} H _{b2}									
	Report of validation experiment results									
	Fully documented RGB-D depth-only calibration program that produces the transformation from the second robot base to the first robot base, ^{b1} H _{b2}									
Maximum	Report of validation experiment results									
	Needle targeting in real tissue experiment results									
a w										
Backgro	ound Plan	Dependencies	Deliverables	Calibrations	Validation	Time Tab				

Camera Calibration

Objective

Given a set of images of a calibration object with known dimensions (i.e. checkerboard), determine the intrinsic and extrinsic matrices of the camera.

Hand-Eye Calibration

Objective

Given a set of robot calibration states and the corresponding images of a known calibration object, produce the transformation from the camera space to the robot's end-effector space.

Tsai's Least-Squares Method

- Command the robot to N predefined states. Each state should be oriented such that the camera is facing the calibration object.
- 2. Acquire a photo of the calibration object at each state.
- 3. Generate the camera's position relative to the calibration object in each frame.
- Solve the equation AX = XB, where A is the transformation between camera poses, B is the transformation between robot end effector poses, and X is the transformation ^gH_e.

From An Overview of Robot-sensor Calibration Methods for Evaluation of Perception Systems ³

Checkerboard Calibration

Pseudo-Code

Output: b1Hb2

Background

Plan

Calibration Error Analysis

Protocol

- 1. Manually position robots so calibrated pointer tips are touching. These points have zero linear distance between them and are considered the ground truth.
- 2. Transform the second robot's points into the first robot's base frame.
- 3. Measure the Euclidean distance between the point pair as the linear error.
- 4. Repeat this process at many points around the robots' workspace.

Optional

To get Z-axis rotation error, compute tangential error component for each point and divide by distance from workspace center.

Calibration Error Results

Mean Linear Error: 2.7599 mm StDev: 1.1598 mm Mean Z-Axis Rotation Error: 0.7448° StDev: 0.4583°

Time Table

Week:	Feb-21	Feb-28	Mar-6	Mar-13	Mar-20	Mar-27	Apr-3	Apr-10	Apr-17	Apr-24	May-1
Basic Setup:											
Learn ROS and KUKA Basics											
Computer Vision Fundamentals											
Hand-Eye Calibration			[
Robot-to-Robot Calibration:				[
Checkerboard Calibration				[
ARToolkit Calibration					[
RGB-D Depth/Feature Calibration											
Max Deliverable Goals:							[
RGB-D Depth Only Calibration							[
Needle Tracking in Real Tissue							[
Write-Up and Poster Prep							[
Compile Final Report							[
Poster and Presentation Prep											

Time Table - Revised

Week:	Feb-21	Feb-28	Mar-6	Mar-13	Mar-20	Mar-27	Apr-3	Apr-10	Apr-17	Apr-24	May-1
Basic Setup:											
Learn ROS and KUKA Basics											
Computer Vision Fundamentals											
Hand-Eye Calibration											
Robot-to-Robot Calibration:				[
Checkerboard Calibration				[
ARToolkit Calibration					[
RGB-D Depth/Feature Calibration					[
Max Deliverable Goals:											
RGB-D Depth Only Calibration											
Needle Tracking in Real Tissue											
Write-Up and Poster Prep											
Compile Final Report											
Poster and Presentation Prep									[

Upcoming Checkpoints

- April 12th: Maximum Deliverables Research
- April 16th: ARToolKit Calibration Program
 RGB-D Features and Depth Program
- April 23rd: RGB-D Depth-Only Program

Readings

- 1. B. Fuerst, J. Fotouhi, and N. Navab. "Vision-Based Intraoperative Cone-Beam CT Stitching for Nonoverlapping Volumes." *Lecture Notes in Computer Science Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015* (2015): 387-95. Web.
- 2. H. Bay, T. Tuytelaars, and L. Van Gool. "SURF: Speeded Up Robust Features." Computer Vision ECCV 2006 Lecture Notes in Computer Science (2006): 404-17. Web.
- M. Shah, R. D. Eastman, and T. Hong. "An Overview of Robot-sensor Calibration Methods for Evaluation of Perception Systems." Proceedings of the Workshop on Performance Metrics for Intelligent Systems - PerMIS '12 (2012). Web.
- O. Zettinig, B. Fuerst, R. Kojcev, M. Esposito, M. Salehi, W. Wein, J. Rackerseder, B. Frisch, N. Navab, "Toward Real-time 3D Ultrasound Registration-based Visual Servoing for Interventional Navigation," IEEE International Conference on Robotics and Automation (ICRA), Stockholm, May 2015.
- 5. R. Kojcev, B. Fuerst, O. Zettinig, J.Fotouhi, C. Lee, R.Taylor, E. Sinibaldi, N. Navab, "Dual-Robot Ultrasound-Guided Needle Placement: Closing the Planning-Imaging-Action Loop," Unpublished Manuscript.
- R. Tsai, and R. Lenz. "A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/eye Calibration." IEEE Trans. Robot. Automat. IEEE Transactions on Robotics and Automation 5.3 (1989): 345-58. Web.
- 7. Y. Gan, and Xong Dai. **"Base Frame Calibration for Coordinated Industrial Robots."** Robotics and Autonomous Systems 59.7-8 (2011): 563-70. Web.

Questions?

