CIS II Seminar Presentation

Visual Marker Detection and Decoding in AR Systems: A Comparative Study

Matthew Walmer Project 17: Robotic Ultrasound Needle Placement and Tracking

Project Background

- CAMP lab has designed a multirobot surgical system.
- This mobile platform provides flexibility in an operating room environment.
- For multi-robot surgical procedures, precise coordination is key.
- Base to base calibration must be done frequently, because the platform is mobile.
- We need an efficient method to precisely calibrate multiple robots.

Objective

Explore a variety of robot-to-robot calibration methods and validate their efficacy for use in dual-robotic surgeries and experiments.

Criteria

Efficiency

Accuracy

Background

From: R. Kojcev, B. Fuerst, O. Zettinig, J.Fotouhi, C. Lee, R.Taylor, E. Sinibaldi, N. Navab, "Dual-Robot Ultrasound-Guided Needle Placement: Closing the Planning-Imaging-Action Loop," Unpublished Manuscript.

Reliability

Usability

Summary

The Paper

Zhang, Xiang, Stephan Fronz, and Nassir Navab. "Visual marker detection and decoding in AR systems: A comparative study." Proceedings of the 1st International Symposium on Mixed and Augmented Reality. IEEE Computer Society, 2002.

Goal

Assess the strengths and weaknesses of four marker tracking systems.

Background

Criteria

Efficiency

Accuracy

Reliability

Usability

Summary

Marker Systems

• ARToolKit (ATK)

• Hoffman marker system (HOM)

• Institut Graphische Datenverarbeitung (IGD)

• Siemens Corporate Research (SCR)

Assessment Criteria

- Usability
 - How easily users can integrate the system into their applications.
 - What platforms does the system run on?
 - Scaling for applications using hundreds of markers.
- Efficiency
 - Running time to detect and decode a marker or multiple markers.
- Accuracy
 - Error in finding feature positions (marker corners) in the 2D image, measured in pixels.
 - Correctness in identifying markers in multi-marker trials.
- Reliability
 - Performance for non-ideal image conditions.
 - Wide angles, many markers, far away markers, poor focus.

Efficiency

(ms/j)	ume).					
Size	$\operatorname{ROM}/\operatorname{MPF}$	Atk	Hom	Igd	Scr	ScrT
320	$68 \times 68/1$	4.1	5.1	6.2	11.6	3.5
×	$61 \times 70/1$	4.1	4.9	6.4	11.9	3.1
240	$188 \times 148/3$	7.1	10.3		14.9	
	$257 \times 207/10$	23.9	35.5		21.9	
640	$200 \times 200/1$	13.1	13.6	19.8	58.2	22.1
×	$514 \times 414/10$	41.6	51.0		72.9	
480	$258 \times 218/10$	33.3	41.3		58.5	

Table 1: Average processing time for marker recognition (ms/frame).

- ROM = region of markers (pixels)
 - "The smallest rectangular region that contains all the markers in the image."

Efficiency

• MPF = markers per frame

Background

• Technical difficulties with IGD for multiple markers

Criteria

• ScrT is a special "tracking mode" for SCR. Only works for single marker.

Accuracy

Reliability

Usability

Summary

Accuracy

- Did not perform tests for accuracy of 3D poses.
 - It's very difficult to determine a ground truth for this.
- For 2D pixel error, they established two methods to create "ground truths" for marker corner positions:
 - OpenCV corner detection (OCV)
 - Edge detection, least square line fitting, and intersection (LIT)

Accuracy

OCV

Table 2: 'Errors' related to the LIT points (Avera	ge Dis- Table	3: 'Error'	related to	the \mathbf{L}	F points	(Average Dis	S-
tance)/(Standard Deviation) (in pixels).	tance	/(Standar	d Deviation	1) (in j	pixels).		

			- /	
angle	Atk	Hom	Igd	Scr
90°	1.43/0.57	0.98/0.48	0.84/0.29	0.46/0.26
75°	1.43/0.51	0.84/0.43	0.85/0.31	0.58/0.34
60°	1.27/0.43	0.88/0.35	0.84/0.33	0.61/0.34
45°	1.57/0.42	0.92/0.46	0.99/0.44	0.63/0.40
30°	1.28/0.39	0.92/0.37	0.94/0.38	0.63/0.32
Avg.	1.40/0.46	0.91/0.42	0.89/0.35	0.58/0.33

angle	Atk	Hom	Igd	Scr
90°	1.55/0.32	1.22/0.14	0.17/0.10	0.59/0.14
75°	1.44/0.07	1.12/0.05	0.22/0.11	0.59/0.09
60°	1.42/0.12	1.17/0.05	0.37/0.13	0.78/0.24
45°	1.50/0.21	1.05/0.13	0.39/0.11	0.53/0.12
30°	1.23/0.18	1.16/0.06	0.44/0.24	0.71/0.17
Avg.	1.43/0.18	1.14/0.09	0.32/0.14	0.64/0.15

- Defining two different ground truths gives ambiguous results.
- SCR was best with respect to the LIT points.
- IGD was best with respect to the OCV points.
- ATK had the highest error under both ground truths.
 - They theorize that this is a result of ATK's binary image processing.

5 C	Background	Criteria	Efficiency	Accuracy	Reliability	Usability	Summary

Reliability

Projective Distortion

Multiple Markers

(a) Large ROM

-1-

(b) Small ROM

Small Region of Marker

(1) Perfect

(5) Worst

Poor Focus

^v ^v	Background	Criteria	Efficiency	Accuracy	Reliability	Usability	Summary

Reliability - Projective Distortion

Table 4:	Marke	r recognition	rate under	prosp	pective	distor-
ion $(\%)$						
						4

an	gle	Atk	Hom	Igd	Scr
9	0°	100	100	100	100
7	5°	100	100	100	100
6	0°	100	100	100	100
4	5°	100	100	100	98
3	0°	100	100	100	95
1	5°	$71/(cf \ge 0.50)$ $16/(cf \ge 0.67)$	100	0	7
		$\delta/(ci \ge 0.75)$			

- Comparable performance up to 30 degrees.
- ATK has confidence threshold that can be configured.
- HOM has a similar scale from 0 to 6.
- SCR uses HOM's confidence scale but only accepts high confidence values.

Reliability – Multiple Markers

Background

 Table 5: Marker recognition rate with multiple markers

 (%).

Size	ROM/MPF	Atk/cf	Hom	Scr
	$(514 \times 414)/10$	$90/(cf \ge 0.50)$ $59/(cf \ge 0.67)$	100	81
640		$46/(cf \ge 0.75)$		
×		$83/(cf \ge 0.50)$		
480	$(258 \times 218)/10$	$38/(cf \ge 0.57)$	100	72
		$29/(cf \ge 0.75)$		
		$83/(cf \ge 0.50)$		
	$(257 \times 207)/10$	$39/(cf \ge 0.67)$	100	52
320		$14/(cf \ge 0.75)$		
×		$100/(cf \ge 0.50)$		
240	$(188 \times 148)/3$	$86/(cf \ge 0.67)$	100	93
		$58/(cf \ge 0.75)$		

Reliability

Usability

Summary

- IGD omitted due to technical difficulties.
- ATK has a tendency to incorrectly identify similar markers.
- The confidence value can be high for misidentified markers.
- This is a result of ATK's fast but simple template matching system.

Efficiency

Accuracy

• The other systems did not misidentify any markers.

Criteria

Reliability – Small Region of Marker

- Gradually zoomed out camera until each marker could not be recognized.
- ATK had the best performance.
- HOM and SCR performed comparably.
- IGD needed a much larger region to detect the marker.

(c) IGD 44×44 pixels

(d) SCR 21×21 pixels

56

Figure 18: Marker recognition with small region of interest (image size 320×240 pixels).

Reliability – Poor Focus

Table 6:	Recognition	rate with	poorly	focused	videos	(%)).
----------	-------------	-----------	--------	---------	--------	-----	----

Focus	Atk	Hom	Igd	Scr
Perfect	100 (cf=0.79)	100	100	100
Good	100 (cf=0.81)	100	100	100
Bad	100 (cf=0.63)	100	28	97
Worse	100 (cf=0.56)	0	12	0
Worst	100 (cf=0.73)	0	0	0

- ATK's confidence values were very questionable.
- Showed higher confidence for the most unfocused images.
- HOM's confidence metric was very reliable.

Usability

- ATK was ranked highest for usability:
 - open-source
 - works on most platforms
 - very well documented.

Usability

Summary

• A downside to ATK:

Background

– Custom markers require extra pattern registration.

Criteria

- The other marker systems use systematic grid patterns.
- They can generate thousands of distinct markers with no extra steps.
- ATK does not scale well to applications requiring hundreds of markers.
- The other programs have limited availability, and do not have good multiplatform support.
- They encountered difficulties with IGD's multi-marker tracking, but humbly attributed it to their "own unfamiliarity to the IGD system."

Accuracy

Reliability

Efficiency

Qualitative Discussion and Summary

- ATK
 - Open source, well documented and widely compatible.
 - Fastest detection and decoding, but for a cost.
 - Lower accuracy and misidentified markers.
 - Custom markers require extra registration step.
 - Good for prototyping and simple AR applications.
- HOM
 - Good speed and accuracy.
 - Excellent detection and decoding.
 - Reliable confidence metric.
- IGD
 - Good speed and high accuracy.
 - Inconvenient to run in Windows.
- SCR
 - Slowest system, but much faster in tracking mode.
 - High accuracy.

Assessment of the Paper

Pros:

- Established clear criteria for assessing the systems.
- The wide range of experiments succeeded in bringing out the strengths, weaknesses and quirks of these systems.
- Clearly demonstrated issues with ATK's marker identification and confidence metric.
- Gave a detailed, qualitative summary of each system's performance.

Cons:

- Some further tests are needed:
 - 3D pose error
 - Variable lighting
 - Noisy and cluttered images
- Needs a more thorough exploration of the usability criteria for HOM, IGD and SCR.
- More analysis of ATK's systematic corner position errors.
- Two "ground truths" in accuracy testing.

A							
U U					B. P. LW		
	Background	Criteria	Efficiency	Accuracy	Reliability	Usability	Summary

Last Comments

- For our application, we use ARToolKit because it is the most accessible.
 - Good for prototyping.
 - We only need a few unique markers.
 - We may try other systems if ARToolKit is too inaccurate in practice.
- ARToolKit is by far the most frequently used of these systems, largely because it is open source and well maintained.
- The other three systems are less easy to find.
- There is a modified version of ARToolKit called ARToolKitPlus which adds systematic markers like those used by the other systems.

Questions?

