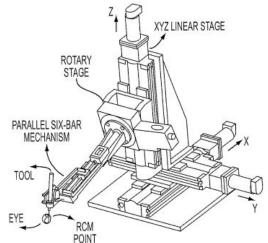
Surgical Instrument for Robotic

Open Microsurgery

Radhika Rajaram and Olivia Puleo

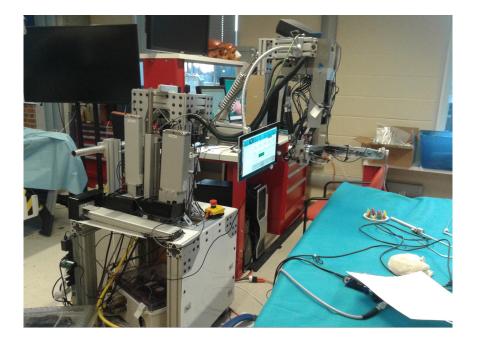
Mentors: Yunus Sevimli, Dr.Russell Taylor, Dr.Christopher Razavi

Background


- Microvascular anastomosis- connecting blood vessels to restore circulation
- Lengthy procedure which requires precision- impeded by natural hand tremor
- Experienced microsurgeons operate at an accuracy of 50 µm; robotic assistance refines this accuracy by a factor of 10

Background

Galen robot (a.k.a REMS, Steady-hand robot)


- 7 DOF manipulator (5 DOF active, 2 DOF passive)
- Holds surgical instrument while surgeon guides the robot's end-effector directly (cooperative control vs master-slave), gain foot pedal controls the admittance
- Control algorithms cancel out tremor, can add virtual fixtures
 z, Q

Microsurgery using the Galen

Latest version of the Galen

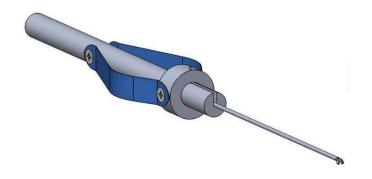
Advantages:

- Does not disrupt usual workflow of surgeon
- Does not require extensive training unlike Da Vinci system
- Can quickly change tools
- Can use of multiple robots without obstructing the view of the operating area

Current Needle driver for microvascular surgery

Held by Galen at the top, with the surgeon's hand guiding it next to the tip

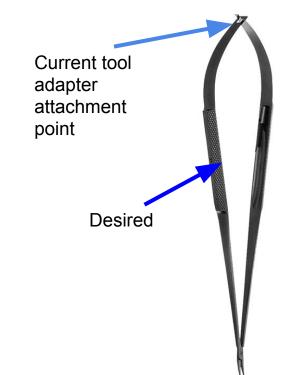
- Cooperative control scheme requires different ergonomics- harder to orient instrument when there is a large lever arm
- Workspace not well-utilized surgeons prone to exceed workspace limits
- Surgical tool forces are now absorbed by the robot & surgeon no longer receives haptic feedback and might damage the tissue by applying excessive forces


2015 design - microvascular needle driver

Pros:

- Slim profile
- Good design for manufacturing ability

Cons:


- Designed for a different tool adapter
- Difficulty in rotating about its axis easily
- Not robust
- Sterilization issues

Project Goal

Overall goal is to develop special surgical instruments that are ergonomic and provide dexterity and haptic feedback when integrated with the robot's tool holder

Current goal is to design a needle driver with the tool attachment point below where the surgeon would hold it

Design Approach

- Take apart existing forceps and cannibalize useful parts.
- Design different gripper/actuators for the forceps.
- Design tool-holder accessory for rotational DOF
- Prototype feasible designs
- Test with Galen and evaluate
- Iterate over design and fabrication methods

Deliverables

Minimum:

• A needle driver prototype made with the correct dimensions, Galen integration, ability to rotate, and grasping tool tip

Expected:

• Needle driver that is made out of stainless steel

Maximum:

• Two tools - needle driver and vascular holder - that are designed for manufacturing ability and sterilizability

Management plan

Olivia	Radhika			
Design of gripper				
Design of rotation accessory				
3D printing				
Machining				

Bi-weekly meeting with Yunus

Meeting with Dr. Taylor and Dr.Razavi as and when possible

Timeline

	February	March	April	May
Preliminary Research		14 A 4 A 4	1	
Reading papers, mentors discussion				
Write project proposal & presentation				
Training & certification	8.00			
Design & Prototyping				
CAD design for forceps gripper				
CAD design for rotational accessory				
Rapid prototyping				
Initial testing & evaluation				
Alpha version				
Improved design & CAD models				
Machining				
Testing with robot				
Revised design & implementation				
Final Evaluation with surgeons				
Final report and poster presentation				

Milestones

Accomplishment	Estimated Date	Status
Presentation	February 16	Ongoing
Proposal	February 20	Ongoing
Certification	February 28	Incomplete
CAD model for tool and accessory	March 7	Incomplete
3D printed model	March 16	Incomplete
New design	March 28	Incomplete
Fabricated alpha version	April 9	Incomplete
Testing & Surgeon feedback	April 17	Incomplete
Modified design & evaluation	May 4	Incomplete
Final presentation	May 18	Incomplete

Dependencies

Dependency	Plan to Resolve	Estimated Resolution Date
Access to Galen	Olivia already has access to the Mock OR	Resolved
Machine shop access	Sign up for WSE "Maker Space" training and self-service machine shop training, attend training and get certification	Feb 28th
Funds for machining and training	Speak to project mentors about project budget and fund access	Feb 28th
Availability of residents and experienced surgeons for testing	Coordinate with Galen Robotic's medical collaborators	March 30th

References

Ashai, Z. and Lakshminarayanan, P. (2015, May 5). *Surgical Instruments for Robotic Microsurgery*. Retrieved from https://ciis.lcsr.jhu.edu/dokuwiki/doku.php?id=courses:446:2015:446-2015-03:project_3_main_page

Macdonald, J.D. (2005, Aug 15). *Learning to Perform Microvascular Anastomosis*. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214708/

Medline. (2016). *Konig[®] Surgical Instruments*. Retrieved from http://www.medline.com/media/catalog/Docs/MKT/KONIG%20SURGICAL%20INSTRUMENTS%20CATALOG.PDF

Olds, K.C. (2015). *Robotic Assistant Systems for Otolaryngology-Head and Neck Surgery* (Doctoral Dissertation). Retrieved from https://jscholarship.library.jhu.edu/handle/1774.2/37927

Olds, K., Chalasani, P., Lopez P., Iordachita, I., Akst, L., Taylor, R.H. (2014) *Preliminary Evaluation of a New Microsurgical Robotic System for Head and Neck Surgery*. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6942721

Gudeloglu, A., Brahmbhatt, J. V., & Parekattil, S. J. (2014). Robotic-Assisted Microsurgery for an Elective Microsurgical Practice. *Seminars in Plastic Surgery*, *28*(1), 11–19. http://doi.org/10.1055/s-0034-1368162