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Background

• K-wire insertion currently requires many 
X-rays 

• Misplacement could damage important 
structures in the body

• Current tracking solutions are ineffective for 
K-wire

– Traditional computer vision solutions fail 
– Trackers cannot be placed on it

• Propose to use convolutional neural 
network trained on RGB images
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X-ray image of hip region in pelvic 
surgery

Multiple entry wounds

Images from Fischer, Marius, et al. "Preclinical usability study of multiple augmented reality concepts for K-wire 
placement." International Journal of Computer Assisted Radiology and Surgery 11.6 (2016): 1007-1014.



2) Estimate 
orientation/pose

Solution

Deep learning based K-wire tracking algorithm using RGB images 
• Eliminates the need for multiple X-ray images 
• Can be easily integrated into augmented reality solutions to orthopedics surgery
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1) Identify K-wire 3) Show K-wire 
orientation/pose

All images from Kovacevic, D., Vogel, L. A., & Levine, W. N. (2015, November). Complex Elbow Instability: Radial Head and 
Coronoid. Hand Clinics. 



Technical Approach

• Create data
– Create a modular data set by capturing foreground and background separately

• Design network
– Design and train a CNN based neural net to segment K-wire in RGBD images
– HED for tool tracking[8] , U-Net[9]...

• Pose estimation from segmented stereo image pairs
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Sample background shotsSample foreground shot 
before segmentation 

[8] Pakhmov et. al, Semantic-boundary-driven approach to Instrument Segmentation for Robotic Surgery
[9] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In MICCAI 2015 (Vol. 9351, pp. 
234–241)



Deliverables

Minimum
• Phantom to create training data
• Modular data set

– Foreground videos with K-wire against drape
– Segmentations of the K-wire position

• Calibrated stereo cameras
• CNN trained on K-wire video with plain background to segment it
Expected
• Realistic data set of surgical workspace by composing foreground and 

background videos of surgical workspace with instruments (ie. scalpel)
• Algorithm to extract K-wire orientation from segmentation in 2D
• CNN trained with realistic data that can segment the K-wire
Maximum
• Algorithm to extract K-wire position and orientation in 3D in free space
• Algorithm to estimate position of K-wire tip with occlusion
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Data Set Creation – Capturing Images
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Foreground 
images

Background 
images

Varying Lighting Varying Colour

Increasing Complexity



Data Set Creation – Composing Images 
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Data Set Creation – Challenges
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No colour blending Too perfect colour blending

Kwire

• Histogram matching in each LAB channels
• Outward Gaussian blurring on the mask to smooth edges



Technical Approach – Holistically-Nested Edge Detection
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U-Net
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[9] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation

Fully convolutional 
network: retains 
semantic context, better 
for memory usage 



U-Net

• Fully connected layers replaced by convolutional layers
• Usual contracting network supplemented by upsampling

layers: increase the resolution of the output.
• High resolution features from contracting path combined 

with upsampled output: retains image context
• Originally used with ~30 images! (with extensive 

augmentation)
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U-Net: Training with Level 1 Images
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a) Original images   b) Ground truth  c) Predictions  

• 5 Layers

• Cross entropy loss 
with weight 
balancing

• Adam optimizer



U-Net: Challenges
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Possible solutions:
• Experiment with hyper-parameters etc
• Train using higher level images directly
• Better post-processing

a) Original image b) Prediction c) After post-processing

Disjoint masks
(Train for longer)

Low quality masks



U-Net: Challenges
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Possible solutions:
• Experiment with hyper-parameters etc
• Train using higher level images directly
• Better post-processing

a) Original image b) Prediction c) After post-processing

Disjoint masks
(train  for longer)

Low quality masks



U-Net- Retrain with Level 2 Images
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Original Ground truth Epoch 1 Epoch 25 Epoch 115 Epoch 200



U-Net: Retrain with Level 2 images
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Much better results on 
Level 1 images!

• Refine network
• Post-processing

a) Original image b) Prediction

Results



U-Net: Further

• Refine network to increase accuracy
– Iterative!
– Better post-processing methods

• Validation with new data

• Orientation estimation in 3D
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Dependencies
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Dependency Status Plan

Access to servers for 
training CNN
Get Keras installed in server In progress Contacted Anton

Access to camera and 
surgical instruments
Access to segmentation 
library
Create a phantom

Observe K-wire use in clinic In progress In discussion with Alex 
Johnson

Usage limit on thin6 server In progress Obtained access to 
MARCC cluster, run on 
desktop with GPU



Timeline
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