
Problem Statement 

We propose a deep learning based K-wire tracking algorithm 

using RGB images. This   eliminates the need for multiple X-ray 

images. In addition such a technique  can be easily integrated into 

augmented reality solutions for orthopedics surgery. 

Solution 

1. Data Creation:  

• Capture the K-wire and scene separately 

• Augment K-wire and scene separately  

• Compose them in stages to vary complexity 

 

 

 

 

 

 

 

 

2. Network Architecture:  

• Train the network on incrementally more complex data  

• Explore two different kinds of networks: U-Net and HED  

• Both fully convolutional networks that allow end to end training 

and give pixel wise segmentation masks 

 

3. Validation:  

• 2D validation: compare orientations of the K-wire in images 

• 3D validation: Triangulate 2D orientations into 3D using the 

stereo parameters  

• Ground truth: manual segmentation on ~40 images (~40) 

Fig: Varying data complexity: a) Level 0  b) Level 1  c) Level 2 

Future Work 

• Improve K-wire detection in the presence of other tools  

• Searching for the K-wire in the corresponding region of the other 

image, when it is detected only in one  

• Identifying pose in 3D 

 

Discussion 
 

• Composed images can be used to augment datasets that 

generalize to natural images  

• HED shows better performance than the U-Net though that could 

be because of starting with pre-trained weights  

• Common point of failure is when the network detects scissors 

• 2D errors could get magnified greatly in 3D 

 

 

Results 

We validate the networks on natural (not composed) images. 

Both U-Net and HED perform reasonably well with Level 0 and 

Level 1 images. Level 2 images throw some difficulties to both the 

networks, due to the presence of similar instruments like scissors.  

Lessons Learned 

• Software experience in TensorFlow  

• Deep learning knowledge: Fully convolutional neural networks, 

effects of hyperparameter tuning  

• The importance of various techniques learned in other classes 

such as stereo camera calibration, transformations between 

camera spaces, tool space, and AR toolkit marker space, and 

Epipolar geometry 

Management Summary 

• Met a few times per week to discuss progress, issues, next 

steps and work distribution  

• Athira: Image augmentation, U-Net  

• Jie Ying: Data composition, HED 

• Both: Data collection, Validation  

• Weekly meetings with mentors 

Introduction 

K-wire is a commonly used tool in many 

orthopedic surgeries. The goal of this 

project is to provide K-wire detection and 

tracking to aid insertion. 

 

Currently K-wire insertion: 

1. Is time consuming 

2. Requires many X-rays 

3. Could require multiple attempts 

4. Could damage important structures 

Fig: Original images, centre: HED output, right: U-Net output. These figures show 

sample successes and failures from Level 0 (a), Level 1 (b) and Level 2 (c & d) images 
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Table 1: Success Rate and Error in 2D 

Level 
No. of 

Images 

Correct Detections Error (deg) 

HED U-Net 
HED U-Net 

Mean Var. Mean Var. 

0 10 10 10 0.33 0.25 0.40 0.27 

1 10 10 10 0.55 1.00 0.50 0.37 

2 10 18 13 0.83 1.43 0.77 1.19 

Table 2: Success Rate and Error in 3D for Individual Stereo Pairs 

HED 
Success T T T T T F T F T T Mean Var. 

Err (°) 1.5 3.2 20.1 0.6 1.0 - 1.1 - 4.2 0.2 4.0 44.5 

U-Net 
Success T F F T F F T T F F Mean Var. 

Err (°) 16.4 - - 1.2 - - 2 4.6 - - 6.0 49.9 


