

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

3D Tool Tracking in the Presence of Microscope Motion

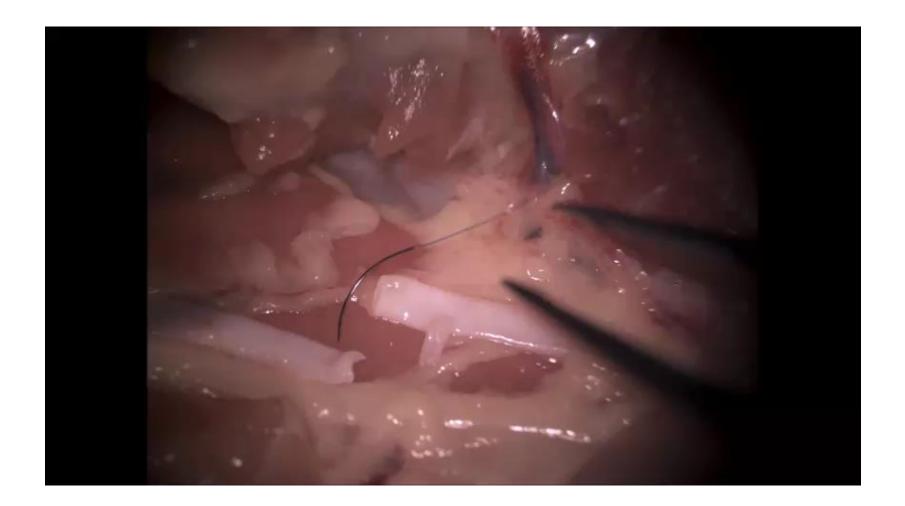
Team: Molly O'Brien PhD Student mobrie38@jhu.edu Mentors:

Dr. Austin Reiter, Dr. Russell Taylor

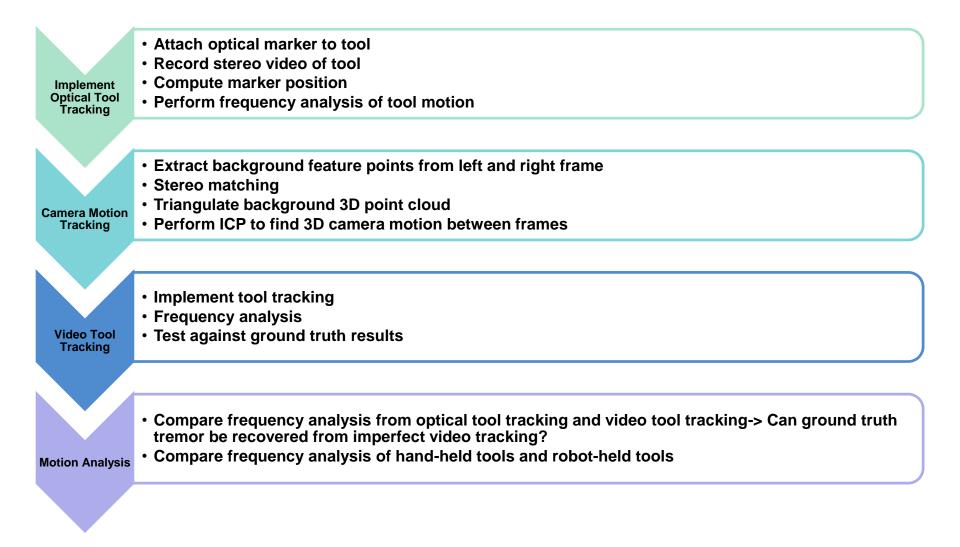
Copyright © 2016 R. H. Taylor

Clinical Motivation: In the operating room

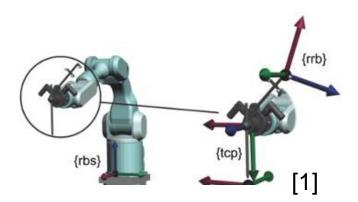
Mastoidectomy: a microsurgical procedure



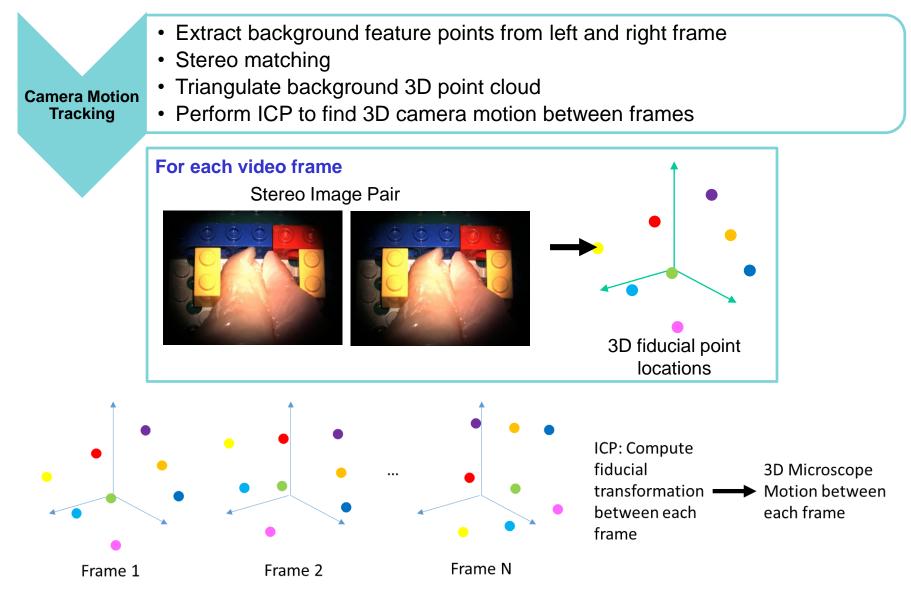
https://www.youtube.com/watch?v=HXTEFoFJ9iA&t=617s

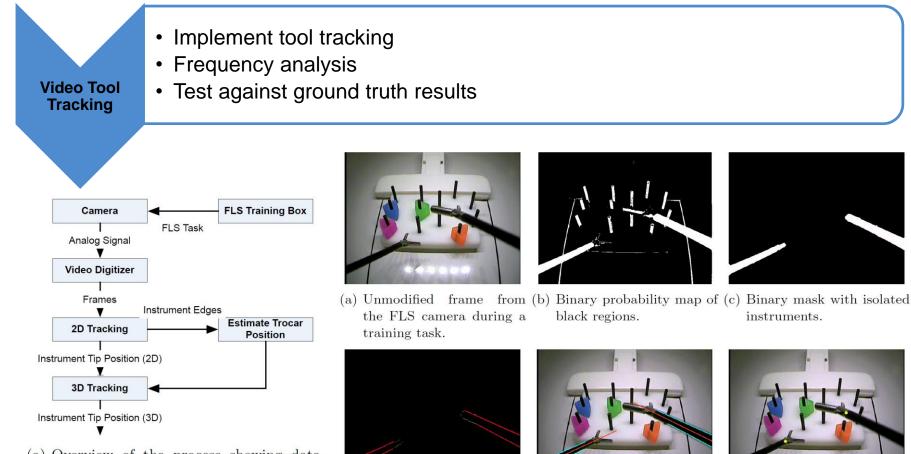


Clinical Motivation: In the lab


Proposed Solution

- Attach optical marker to tool
- Record stereo video of tool
- Compute marker position
- Perform frequency analysis of tool motion


- Existing technology
- Get ground truth tool tracking data

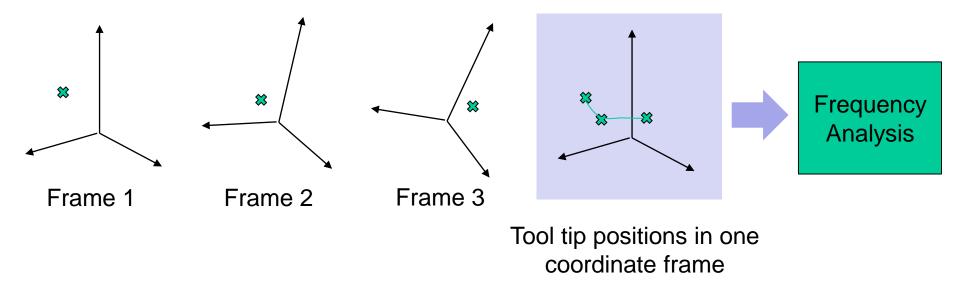

5

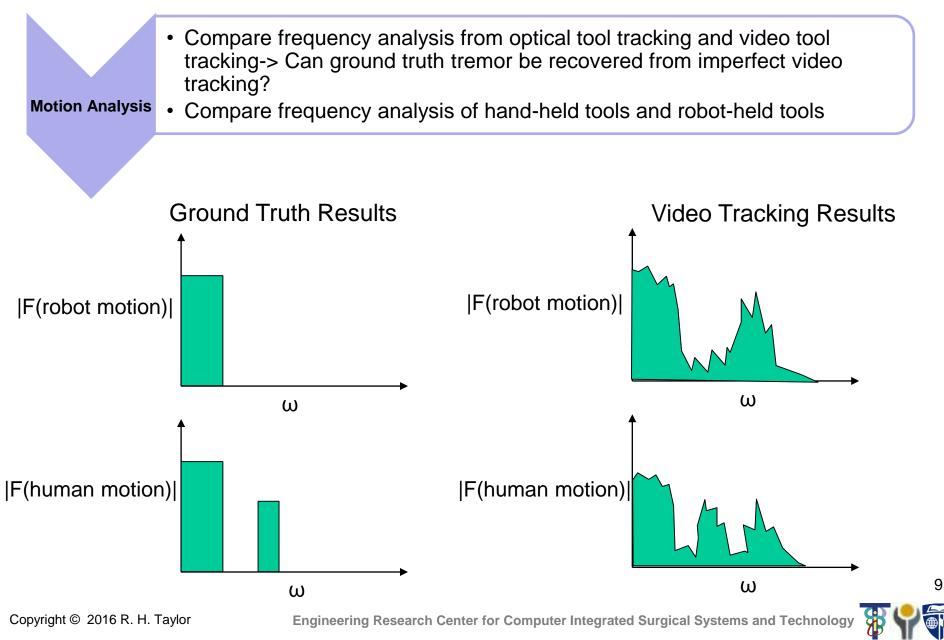
Implement Optical Tool

Tracking

- (a) Overview of the process showing data flow.
- (d) Extracted lateral contours (e) Instrument direction estiof instruments.
 - mated using line-fitting.
- (f) Tracked position in 2D.

[2] B. Allen, F. Kasper, G. Nataneli, E. Dutson, and P. Faloutos, "Visual Tracking of Laparoscopic Instruments in Standard Training Environments," in MMVR, Newport Beach 2011.


Copyright © 2016 R. H. Taylor


 Compare frequency analysis from optical tool tracking and video tool tracking-> Can ground truth tremor be recovered from imperfect video tracking?

Motion Analysis • Compare frequency analysis of hand-held tools and robot-held tools

Tool tip detections:

Deliverables

Deliverab	les						
Min	A system capable of measuring tool movement (using existing tracking system)						
	Frequency results from tracked tool movement (using existing tracking system)						
	Algorithm to triangulate 3D points from stereo video and track background motion (with fiducial points)						
Expected	Tool tracking algorithm using microscope video						
	Frequency analysis of the tool tip motion from a stereo video						
Max	Algorithm to get accurate tool tip motion and tremor from microscope video						
	Comparison of hand-held and robot-held tool tremor						

Dependencies

Dependency	Proposed Solution	Status							
Access to microscope and video capture computer	Coordinate with Dr. Taylor and lab	Resolved							
Chicken holding phantom	Enlist other members of the lab to help me	In progress							
Access to robot	Determine when robot will be needed. Coordinate with Dr. Taylor and lab	Pending							
Access to tools	Coordinate with Dr. Taylor and lab	Resolved							
Access to optical tracking system	Coordinate with Dr. Taylor and lab	Pending							

Management Plan

Weekly meetings with Dr. Taylor and Dr. Reiter

Schedule

3D Tool Tracking Project Planner

Select a period to highlight at right. A	Period Highlight:	Plan	Duration					al Sta	ar	% (Com	plet	e		Act	ual	(bey	yond plan)				% Cc	mplet	(e i							
ΑCTIVITY	PLAN	PLAN	ACTUAL	ACTUAL	PERCENT	PERIODS	_Q			1-Mar 2-Mar					22-Mar 24-Mar						14-Apr					3-May -			18-May	1	
	START	DURATION	START	DURATION	COMPLETE	L PER	1																							8 29 3	20
Get ground truth data	2	8				1	2	3	4 !	56	57	8	9.	10 1	1 12	2 13	14	15	10	1/	18	19	20	21	22 4	23 24	25	26	21 2	8 29 :	30
Pick optical tracking system	2	2							~~~~~	~~~~	~~~~~																				
Set up system	4	5						1																							
Add markers to tool	4	4						1																							
Record tracking data and										1																					
microscope video (with hand-																															
held and robot-held tools)	6	3																													
Frequency Analysis of optical																															
tracking data	8	2																													
Compute background motion	1	5	1																												
Triangulate background 3D																															
points	1	2	1																												
Compute camera rotation																															
between frames	2	4																													
Implement video tracking													- 7																		
algorithm	10	14																													
Color segmentation	10	4											Ŵ				6														
Extract tool connected																															
component, contours	14	4																													
Compute tool tip location	18	4																													
Frequency Analysis of video																								- 1							
tracking data	22	2																						1							
Frequency Investigation	24	3																													
Compare tracking results from																											4				
optical tracker and video																											9				
tracker	24	1																									Ø				
Create an algorithm to extract																															
accurate tool motion from																															
imperfect video tracking	25	2																									1111	444			

Reading List

- Camera motion calc
 - S. Leonard, A. Reiter, A. Sinha, M. Ishii, R. Taylor, and G. Hager, "Image-Based Navigation for Functional Endoscopic Sinus Surgery Using Structure From Motion," in *SPIE*, San Diego, 2016.
- Tool tracking
 - B. Allen, F. Kasper, G. Nataneli, E. Dutson, and P. Faloutos, "Visual Tracking of Laparoscopic Instruments in Standard Training Environments," in *MMVR*, Newport Beach 2011.
 - R. Sznitman, K. Ali, R. Richa, R. Taylor, G. Hager, and P. Fua, "Data-driven visual tracking in retinal microsurgery. In Medical Image Computing and Computer-Assisted Intervention," in *MICCAI*, Nice 2012.
 - Loubna Bouarfa, Oytun Akman, Armin Schneider, Pieter P. Jonker and Jenny Dankelman (2012) In-vivo real-time tracking of surgical instruments in endoscopic video, Minimally Invasive Therapy & Allied Technologies, 21:3, 129-134, DOI: 10.3109/13645706.2011.580764
 - W. Zhao, C. Hasser, W. Nowlin, and B. Hoffman, "Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information," U.S. Patent 8108072 B2, Jan 31, 2012.
 - A. Cano, F. Gaya, P. Lamata, P. Sanchez-Gonzalez, and E. Gomez, "Laparoscopic Tool Tracking Method for Augmented Reality Surgical Applications," in *LNCS*, vol. 5104, pp. 191-196, 2008.

References

[1] Hans-Christian Schneider and Juergen Wahrburg (2010). Simulation Model for the Dynamics Analysis of a Surgical Assistance Robot, Robot Surgery, Seung Hyuk Baik (Ed.), InTech
[2] B. Allen, F. Kasper, G. Nataneli, E. Dutson, and P. Faloutos, "Visual Tracking of Laparoscopic Instruments in Standard Training Environments," in *MMVR*, Newport Beach 2011.

Questions???

15

Copyright © 2016 R. H. Taylor