

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

3D Tool Tracking in the Presence of Microscope Motion

Checkpoint Presentation

Team: Molly O'Brien PhD Student mobrie38@jhu.edu Mentors:

Dr. Austin Reiter, Dr. Russell Taylor

1

Engineer ng Research Center for Computer Integrated Surgical Systems and Technology

Project Summary

Motivation

•

•

Key Progress and Changes

Original Plan

Updates

Implement Optical Tool Tracking	 Attach optical marker to tool Record stereo video of tool Compute marker position Perform frequency analysis of tool motion 	Implement Optical Tool Tracking	 Stopped, time consuming and not as important Stereo video of suturing and validation video recorded
Camera Motion Tracking	•Extract background feature points from left and right frame •Stereo matching •Triangulate background 3D point cloud •Perform ICP to find 3D camera motion between frames	Camera Motion Tracking	 Implemented Validation: compare tracking results against known motions
Video Tool Tracking	 Implement tool tracking Frequency analysis Test against ground truth results 	Video Tool Tracking	 Initial test of color segmentation unsuccessful Track painted tool
Frequency Analysis	 Compare frequency analysis from optical tool tracking and video tool tracking-> Can ground truth tremor be recovered from imperfect video tracking? Compare frequency analysis of hand-held tools and robot-held tools 	Frequency Analysis	No comparison of optical tracking and microscope tracking results

•

4

Updated Technical Approach

Camera Motion Tracking

 input: feature points

ullet

Output: 3D Transform from current image to previous image

Tool Tracking

- Input: feature points
- Output: 3D tool
 point locations

Frequency Analysis

- Input: Camera movement
 between
 frames, tool
 point locations
- Output: tool frequency analysis

*Photos by Abhinav Goyal

- Camera Calibration
- Triangulate 3D points

• **Pipeline**: Match 3D feature points across frames

Frame 2 L

Frame 2 R

Frame 2 L

Copyright © 2016 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Tool Color Segmentation

Red Threshold R: pixel values [40,140]

Green Threshold: pixel values [50,100]

Blue Threshold: pixel values [50,90]

Tool Color Segmentation

New Tool Tracking Approach

- Tool Tracking system
 - Real time
 - In-vivo
 - Uses color markers
 - Tools tracked using CAMShift + Kalman Filter

Figure 4. Tracking results.

[2]

Recording Data

- 1. Camera motion validation video
- 2. Tool motion validation video
- 3. Chicken suturing: free-hand
- 4. Chicken suturing: robot-assisted

Painted chicken holder (Designed by Abhinav Goyal)

Chicken holder, chicken breast, painted tools

*Photos by Abhinav Goyal

Validation Videos

Camera Motion Validation Video

Tool Motion Validation Video

Suturing Videos

Problems, Exposures, Dependencies

Dependency	Proposed Solution	Status						
Access to microscope and video capture computer	Coordinate with Dr. Taylor and lab	Resolved						
Chicken holding phantom	Enlist other members of the lab to help me	Resolved						
Access to robot	Determine when robot will be needed. Coordinate with Dr. Taylor and lab	Resolved, will need to coordinate with Paul again to record more data						
Access to tools	Coordinate with Dr. Taylor and lab	Resolved						
Access to optical tracking system	Coordinate with Dr. Taylor and lab	Pending						
Problem	Proposed Solution	Status						
Triangulating points took longer than planned	changed tool tracking approach and updated plan	Resolved						

Timeline

ACTIVITY		2-Feb	4-Feb	-Mar	-Mar	-Mar	0-Mar	5-Mar	7-Mar	2-Mar	4-Mar	9-Mar	1-Mar	-Apr	-Apr	2-Apr	4-Apr	9-Apr	1-Apr	6-Apr	8-Apr	-May	-May	0-May	2-May	3-May
	-	5	5	1	m	~~~	1(Ħ	÷,	5	5	56	3	- UN	~	H	Ĥ,	Ĥ	2	5	6	ŵ	ю́		13	.1
Get ground truth data																										
Pick optical tracking system																										
Set up system																										
Add markers to tool																										
Record tracking data and microscope																										
video (with hand-held and robot-held																										
tools)																										
Frequency Analysis of optical tracking data																										
Compute background motion																										
Triangulate background 3D points																										
Compute camera rotation between frames																										
Implement video tracking algorithm																										
Color segmentation																										
Blob Detection																										
Blob Tracking																										
Frequency Analysis of video tracking data																										
Frequency Investigation																										
Validate background motion tracking																										
Compare manual and robot-held tool																										
tremor																										
Create an algorithm to extract accurate																										
tool motion from imperfect video tracking																										

Deliverables

	Original	Updated
Min	A system capable of measuring tool movement (using existing tracking system)	An algorithm to triangulate 3D points from stereo video and track background motion (with fiducial points)
	Frequency results from tracked tool movement (using existing tracking system)	Tool tracking algorithm using microscope video for painted tool
	An algorithm to triangulate 3D points from stereo video and track background motion (with fiducial points)	
Expected	Tool tracking algorithm using microscope video	Validation of triangulated points using known world motion (robot or measured)
	Frequency analysis of the tool tip motion from a stereo video	Frequency analysis of the tool tip motion from a stereo video
Max	An algorithm to get accurate tool tip motion and tremor from microscope video	Comparison of hand-held and robot-held tool tremor
	Comparison of hand-held and robot-held tool tremor	

Management Plan

• Weekly meetings with Dr. Taylor and Dr. Reiter

Reading List

- Camera motion calc
 - S. Leonard, A. Reiter, A. Sinha, M. Ishii, R. Taylor, and G. Hager, "Image-Based Navigation for Functional Endoscopic Sinus Surgery Using Structure From Motion," in SPIE, San Diego, 2016.
- Tool tracking
 - B. Allen, F. Kasper, G. Nataneli, E. Dutson, and P. Faloutos, "Visual Tracking of Laparoscopic Instruments in Standard Training Environments," in *MMVR*, Newport Beach 2011.
 - R. Sznitman, K. Ali, R. Richa, R. Taylor, G. Hager, and P. Fua, "Data-driven visual tracking in retinal microsurgery. In Medical Image Computing and Computer-Assisted Intervention," in *MICCAI*, Nice 2012.
 - Loubna Bouarfa, Oytun Akman, Armin Schneider, Pieter P. Jonker and Jenny Dankelman (2012) In-vivo real-time tracking of surgical instruments in endoscopic video, Minimally Invasive Therapy & Allied Technologies, 21:3, 129-134, DOI: 10.3109/13645706.2011.580764
 - W. Zhao, C. Hasser, W. Nowlin, and B. Hoffman, "Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information," U.S. Patent 8108072 B2, Jan 31, 2012.
 - A. Cano, F. Gaya, P. Lamata, P. Sanchez-Gonzalez, and E. Gomez, "Laparoscopic Tool Tracking Method for Augmented Reality Surgical Applications," in *LNCS*, vol. 5104, pp. 191-196, 2008.

References

[1] https://www.youtube.com/watch?v=HXTEFoFJ9iA&t=617s
[2] L. Bouarfa, O. Akman, A. Schneider, P. Jonker, and J. Dankelman, "Invivo real-time tracking of surgical instruments in endoscopic video," in *Minimally Invasive Therapy & Allied Technologies*, 21, 3, 129-134, May 2011.

