Autonomous Placement of Ultrasound Probe for Spinal Surgeries

Student: Josh Shubert Mentor: Dr. Muyinatu Bell

Project Goals

- Autonomously place an ultrasound probe onto a patient's spine via robot
- Use this probe placement to intraoperatively track a needle inside vertebrae using photoacoustic imaging (and adjust probe placement using this feedback)

The Plan

- 1. Calibrate and Register a Kinect v2
- 2. Develop Human Outline Segmentation
- 3. Develop IK for robot; demonstrate probe placement
- 4. Explore Viability of Photoacoustic Imaging in vertebrae
- 5. Perform Visual Servoing to Track a needle in vertebrae
- 6. Demonstrate entire system (Placement and Tracking)

Step 1 - Kinect v2

- Kinect v2 will be mounted on top of the sawyer robot
- Camera intrinsic parameters will be determined using camera calibration
- Point cloud Point cloud registration will then be performed between kinect and robot base
- This will allow the robot to know the 3-D location of any pixel in the kinect depth image

Step 2 - Human Outline Segmentation

- Using kinect depth image, threshold out depth values lower than the depth values of the table the 'patient' is laying on
- Will then perform body part detection on the resulting image as demonstrated by Plagemann et al in "Real-time Identification and Localization of Body Parts from Depth Images"

Step 3 - IK and Probe Placement

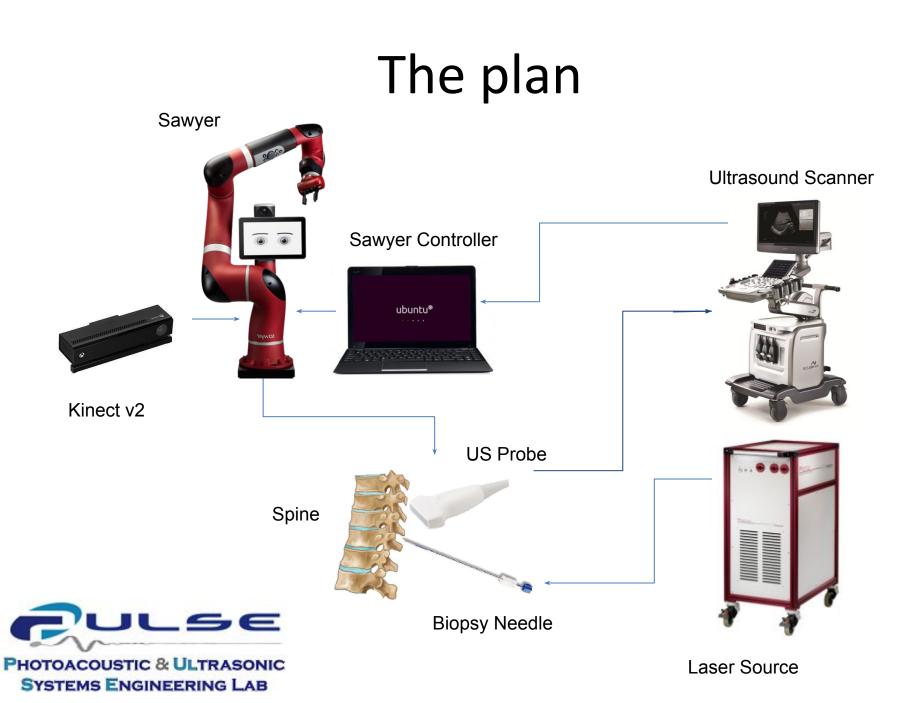
- Use segmented spine location as destination for Sawyer robot's built in IK routine
- Use force control to ensure a gentle touchdown of the ultrasound probe over the spine

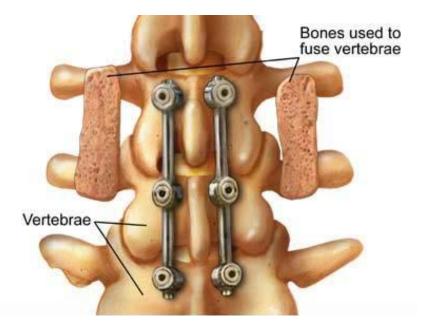
Step 4 - Explore PAI in Spine

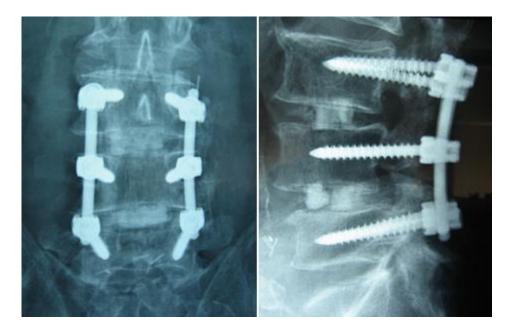
- Obtain spine / vertebrae sample
- Test to see if possible to get a signal through vertebrae
- Compare bare fiber signal to fiber-in-needle signal

Step 5 - Visual Servoing

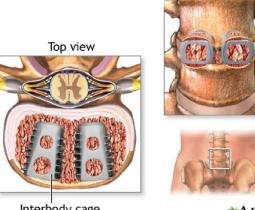
- Use previously developed needle tip segmentation algorithm to segment needle tip location from PA image, and display it overlayed on a ultrasound B-Mode image
- Use segmented coordinates of needle tip to move the ultrasound probe such that it remains centered over the needle tip




Step 6 - Demonstrate Entire System


- On either a cadaver or a human-shaped spinal phantom, perform in sequence:
 - Initial placement of the probe onto the patient's spine
 - Track the movement of the PA imaged bone biopsy

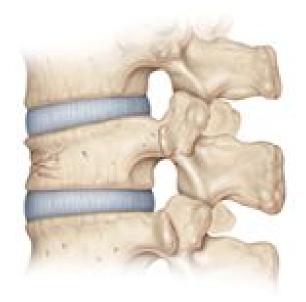
Background – Spinal Fusion



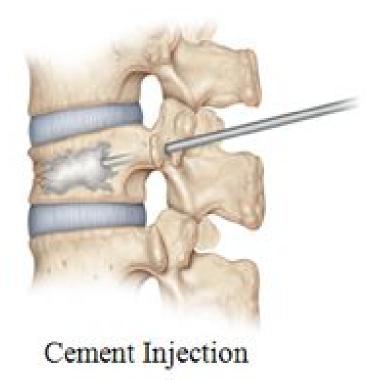
SYSTEMS ENGINEERING LAB

Background – Spinal Fusion

- 150,000 per year
- Bone grafts taken from iliac crest or tibia
- Used to 'fuse' two vertebrae together
- Repeated X-rays are taken to verify pedicle screw placement



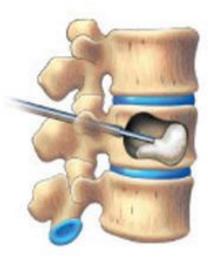
Interbody cage

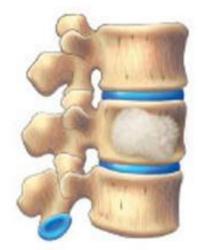

*ADAM

Background - Vertebroplasty

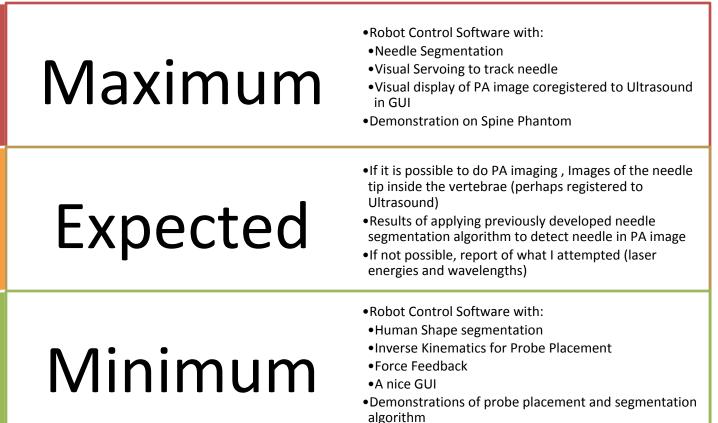
750,000 Vertebral Fractures per year!

Fracture

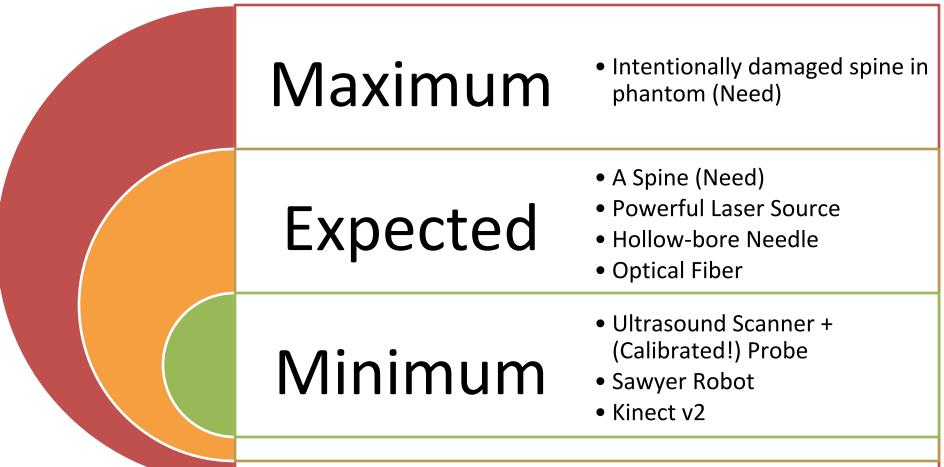

Background - Kyphoplasty


Balloon inserted into fractured vertebra

Balloon inflated inside damaged vertebra


Special material injected into fractured vertebra

Special material hardens, stabilizing vertebra


Deliverables

CULSE

PHOTOACOUSTIC & ULTRASONIC SYSTEMS ENGINEERING LAB

Dependencies

SYSTEMS ENGINEERING LAB

Timeline

Feb 20	Kinect Calibration and Registration - Start + Finish / Explore PA in Spine - Start
Feb 27	Human Outline Segmentation - Start / Explore PA in Spine
Mar 6	Human Outline Segmentation / Explore PA in Spine
Mar 13	Human Outline Segmentation - Finish / Explore PA in Spine - Finish
Mar 20	Inverse Kinematics and Probe Placement - Start + Finish
Mar 27	Visual Servoing - Start
Apr 3	Visual Servoing
Apr 10	Visual Servoing
Apr 17	Visual Servoing - Finish
Apr 24	Demonstrate Entire System - Start
May 1	Demonstrate Entire System
May 8	Demonstrate Entire System
May 15	Demonstrate Entire System - Finish

SYSTEMS ENGINEERING LAB

Timeline

		<				2017																									
					March 2017								April 2017									May 2017									
Activity	Status	9 -	25	26	- 04	05	- 11	1 12	-	18 19		25 2	.6 -	01	02	-	08	09	- 1	5 16	-	22 2	23 -	29	30	-	06 0	7 -	13	14	- 20
	~																														
Project - Calibrate Kinect to Robot	WIP	4																													
Project II - Develop Segmentation Algorithm	NS																														
Project III - Explore Spinal PAI	WIP											900-00-00-00																			
Project IV - Create Visual Servoing Algorithm for Spinal Tracking	NS																														
Project V - Create Phantom and Demo the whole system	NS																														

References

- B. Karan, "Calibration of Kinect-type RGB-D Sensors for Robotic Applications" FME Transactions 2015
- S. Lipson, "Spinal-Fusion Surgery Advances and Concerns" N Engl J Med 2004
- R. Deyo et al, "Spinal-Fusion Surgery The Case for Restraint" N Engl J Med 2004
- R. Buchbinder et al, "A Randomized Trial of Vertebroplasty for Painful Osteoporotic Vertebral Fractures" N Engl J Med 2009

