DVRK stereo camera calibration and model registration

-Checkpoint Presentation-

Group 12: Peter Ahn and Mengze Xu Mentors: Preetham Chalasani and Anton Deguet April 6, 2017

Background

- Goal: Register surfaces to the robot (Patient Side Manipulator, PSM)
- Current Method: Move robot to touch the surface
- What we want to do: Using calibrated stereo camera to substitute touching

Background

- Complete Hand-Eye Calibration
- Detect and register phantom surface to PSM
- Desired accuracy in several *millimeters*

Current Deliverables

Progress – Hand Eye Calibration

- A: Marker pose to camera frame (ArUco package)
- X: Marker pose to end effector
- B: End effector pose to PSM base (DVRK API)
- Z: Camera Pose to PSM Base

Progress – Hand Eye Calibration Setup

Progress – Data Collection Process

Calibration Consistency

Consistency of Same X and Y

RX/rad tX/mm RY/rad tY/mm

- e = 0.01 0.042 20.4 0.048 19.6
- e = 0.001 0.043 **3.5** 0.023 2.7
- Result of e = 0.001 is not bad, but it's very hard to collect data
- e = 0.003 is used later
- Convenience vs. Better Accuracy

Calibration Consistency

Consistency of Same X with different Y

Error	RX/rad	tX/mm
e = 0.003	0.054	10.5

Consistency of Same Y with different X

Error	RY/rad	tY/mm
e = 0.003	0.025	3.1

Calibration Consistency

• For the case of same Y, we move the adapter (X) for about 12mm and the change of tX is 12.7 mm

Calibration Accuracy

- error = [-0.4, 2.8, -1.3] mm
- || error || = 3.1 mm

Phantom Detection Accuracy (via Touching)

- error = [34.6, 55.7, -13.7] mm
- || error || = 67 mm
- Mainly due to the poor result of depth information

HSV Image (color threshold to eliminate background)

Converted back to RGB Image

Sectioned Binary Image

Edge Image (Sobel Filter)

Line Image (Hough Transform)

Technical Approach Changed

Expected Deliverable

- Detect the edge of phantom with single stereo camera and register with model
- Set up two R200 RealSense camera to build a stereo camera system and detect edge points

Maximum Deliverable

• Find correspond surface points in two camera

Future Work

- Set up two calibrated camera systems
- Complete ICP algorithm for detected edge points and test for accuracy
- Complete algorithm to find correspond points to estimate point cloud of unknown surface

Updated Dependencies

Deper	ndencies	How to Resolve	Status				
	dVRK System	Access to LCSR Lab	Resolved				
	Stereo / Depth Camera	Access to LCSR Lab	Resolved				
Hardware	Two R200 Realsense Cameras	Find a way to connect two stereo cameras into one USB hub	Pending				
	3D Printer	Access to 3D Printer Room	Resolved (Peter)				
	Opaque Phantom	Develop another phantom with different coloring dye	Pending [Not immediate concern]				
	ROS	Open source codes	Resolved				
Softwara	ArUco / OpenCV Package	Open source codes	Resolved				
Soltware	Solidworks (CAD)	WSE IT website	Resolved (Peter)				
	MATLAB	WSE IT website	Resolved				

Updated Timeline

Plan Date	Progress	Actual Complete Date
2/18	Finish proposal and presentation	2/18
2/25	Prepare hardware and environment	3/05
3/11	Complete codes for hand-eye calibration	3/14
3/18	Test codes and estimate accuracy	3/31
4/01	Complete contour detection	3/25
4/08	Set up 2 camera system and calibrate	
4/11	Test codes and estimate accuracy for expected deliverables	
4/15	Complete codes for finding correspond points	
4/22	Test codes and estimate accuracy for expected deliverables	
	Leave time for other methods	

Original Timeline

	12-Feb	19-Feb	26-Feb	5-Mar	12-Mar	19-Mar	26-Mar	2-Apr	9-Apr	16-Apr	23-Apr	30-Apr	7-May	14-May
Minimum														
Preparing Closed Proposal and Presentation														
Preparing programming and hardware environment														
Preparing ArUco Marker and Marker Adaptor														
Coding and testing (with ArUco Marker)														
Developing and testing Hand-Eye Calibration Codes														
Expected														
Researching methods for estimating contour of a surface														
Coding using existing libraries (MATLAB)														
Testing the codes with the given phantom														
Modifying the codes														
Maximum														
Exploring algorithms to detect unknown surfaces														
Testing the codes with the given phantom														
Final Reports														
Final Presentations														

Computational Sensing + Robotics **ERC | CISST CISST Sensing + Robotics**

Updated Timeline

	12-Feb	19-Feb	26-Feb	5-Mar	12-Mar	19-Mar	26-Mar	2-Apr	9-Apr	16-Apr	23-Apr	30-Apr	7-May	14-May
Minimum														
Preparing Closed Proposal and Presentation														
Preparing programming and hardware environment														
* Installing/Using ROS packages for dVRK and RealSense Camera														
* Developing Camera Mount														
Preparing ArUco Marker and Marker Adaptor														
* Measuring and developing the CAD model of the Adaptor														
* 3D Printing the Marker Adaptor														
Coding and testing (with ArUco Marker)														
Developing and testing Hand-Eye Calibration Codes														
Expected														
Researching methods for estimating contour of a surface														
Coding using existing libraries (MATLAB)														
* Detecting the boundaries of the surface														
* Detecting the features of the surface														
Testing the codes with the given phantom														
Modifying the codes														
Maximum														
Exploring algorithms to detect unknown surfaces														
* Extracting usable depth information from the 3D camera														
Testing the codes with the given phantom														
Final Reports														
Final Presentations														

Computational Sensing + Robotics **ERC | CISST CISST Sensing + Robotics**

Updated Timeline

	12-Feb	19-Feb	26-Feb	5-Mar	12-Mar	19-Mar	26-Mar	2-Apr	9-Apr	16-Apr	23-Apr	30-Apr	7-May	14-May
Minimum														
Preparing Closed Proposal and Presentation														
Preparing programming and hardware environment														
* Installing/Using ROS packages for dVRK and RealSense Camera														
* Developing Camera Mount														
Preparing ArUco Marker and Marker Adaptor														
* Measuring and developing the CAD model of the Adaptor														
* 3D Printing the Marker Adaptor														
Coding and testing (with ArUco Marker)														
Developing and testing Hand-Eye Calibration Codes														
Expected														
Researching methods for estimating contour of a surface														
Coding using existing libraries (MATLAB)														
* Detecting the boundaries of the surface														
* Detecting the features of the surface														
Testing the codes with the given phantom														
Modifying the codes														
Maximum														
Exploring algorithms to detect unknown surfaces														
* Extracting usable depth information from the 3D camera														
Testing the codes with the given phantom														
Final Reports														
Final Presentations														

Computational Sensing + Robotics **ERC | CISST CISST Sensing + Robotics**