

Dynamic x-ray beam positioning for low-dose CT

Computer Integrated Surgery II

Andrew Mao, William Shyr

Mentor: J. Web Stayman Ph.D.

Team Members

Andrew Mao

William Shyr

Dr. Web Stayman

Motivation

- CT has vast diagnostic utility in medicine
- # procedures growing >10% per annum
- 15% of all radiological exams, but 50% of effective dose
- Publicly recognized need for dose reduction methods
- "One size fits all"
- Fluence field modulation (FFM) strategies promise dose reduction without loss of image quality

Background

Beers-Lambert Law $I = I_0 e^{-\mu \ell}$

Background

Bowtie filters

- Shape via variable thickness
- Variety of possible materials
- Reduce dynamic range of data
- Help to homogenize noise

Multiple aperture device (MAD)

- Binary filter (0% or 100% pass)
- Spectrally neutral
- Compact design (few mm of tungsten)
- Large scale shaping with small actuation

Background

Need & Significance

- Patient often miscentered within bore
 - Average 3cm below center
 - 25.8% dose increase
 - up to 22% noise increase
- Dose and image quality consequences
- Requires repositioning and retaking images
- Impractical in emergency medicine
- Bowtie filters often simply removed -> increased dose

Toth et. al. Med. Phys. 2007

To achieve dynamic x-ray beam positioning in low-dose CT acquisitions and quantitative performance assessment for arbitrary patient positioning in emergency medicine applications

Technical Approach

Calibration & Optimal Trajectory

- Object assume to be ellipse
- Parameter vector \vec{x} : ellipse center, width, height, μ
- $\arg\min_{\vec{x}} \|P\vec{x} g\|^2$
- P is forward projection operator, g is the data
- Filter trajectory computed via optimization on bowtie translation to obtain flat fluence at detector at each angle

Image Acquisition & Reconstruction

Deliverables

Minimum

- Constructed test bench setup & control software
- Working dose assessment and image reconstruction frameworks
- Calibration of object position in FOV using multiple view low-dose scans
- Computed beam filter trajectory for 360° acquisition

Expected

- Simulated image reconstructions on digital phantoms
- Performance assessment on phantom acquisitions using bowtie filters

Maximum

- Artifact correction for MAD imaging (*potential pitfall*)
- Performance assessment on phantom acquisitions using a single MAD

- Dependencies for simulations and image reconstruction
 - Access to GPU workstation (Met)
 - Access to CUDA tools (Met)
 - Digital phantom data (Met)
- Dependencies for physical phantoms
 - Access to prototyping facility (Met)
 - Access to beam filters (Met)
 - Access to CBCT test bench (Met)
- Advising dependencies
 - Mentor availability (Met)
 - Weekly meetings on Friday 2-3pm

Feb				Mar				A	pr				May			
Feb 12	Feb 19	Feb 26	Mar 5	Mar 12	Mar 19	Mar 26	Apr 2	Apr 9	Apr 16	Apr 23	Apr 30	May 7	May 14	May 21	May	28 J
\$ Q	⊕, 7∔															
		Fin	ish literature	e review												
			Finish test t	bench setup												
				Working dos	e assessme	nt and imag	ge reconstru	iction framev	vorks							
					Norking cali	bration of p	atient positi	on								
	mir	nimum			Computed b	eam filter tr	ajectories fo	or CT acquisi	tions (minim	ium)						
							Simulated in	mage recons	tructions us	ing digital ph	antoms					
		e	expecte	ed 📫				Complete pl	nantom acqu	uisitions with	bowtie filte	rs (expected)			
										Working MAE	D artifact c	orrection				
					ma	ximun	ר 📫			C	omplete p	hantom acqu	isitions with	MAD filters	(maxim	num)
												Final report				

Milestones

Date	Description			
3/1/17	Finish literature review			
3/3/17	Finish test bench setup			
3/10/17	Working dose assessment and image reconstruction frameworks			
3/17/17	Working calibration of patient position			
3/17/17	Computed beam filter trajectories for CT acquisitions (minimum)			
3/31/17	Simulated image reconstructions using digital phantoms			
4/7/17	Complete phantom acquisitions with bowtie filters (expected)			
4/21/17	Working MAD artifact correction			
4/28/17	Complete phantom acquisitions with MAD filters (maximum)			
5/5/17	Final report			

Andrew	Will				
Image reconstructions	Scout scans & filter trajectories				
Phantom acquisitions	Performance assessment protocol				
Test bench setup & control software					

MATLAB functions for each step of technical approach

Version Control using Git

Weekly Mentor Meetings

10+ hours at JHMI per week

- 1. Stayman, J. Webster, Mathews, Aswin, Zbijewski, Wojciech, Gang, Grace J., Siewerdsen, Jeffrey H., Kawamoto, Satomi, Blevis, Ira, Levinson, Reuven (2016): Fluence-field modulated x-ray CT using multiple aperture devices. *In: Kontos, Despina; Flohr, Thomas; Lo, Joseph (Ed.): SPIE Medical Imaging, pp. 97830X,International Society for Optics and Photonics 2016.*
- 2. Mathews, Aswin, Tilley II, Steven, Gang, Grace J., Kawamoto, Satomi, Zbijewski, Wojciech, Siewerdsen, Jeffrey H., Levinson, Reuven, Stayman, J. Webster(2016): Design of dual multiple aperture devices for dynamical fluence field modulated CT. *In: 4th International Conference on Image Formation in X-Ray Computed Tomography, pp. 29– 32, 2016.*
- 3. Ouadah, Sarah, Stayman, J. Webster, Gang, Grace J., Ehtiati, Tina, Siewerdsen, Jeffrey H. (2016): Self-calibration of cone-beam CT geometry using 3D-2D image registration.. *In: Physics in medicine and biology, 61 (7), pp. 2613–32, 2016, ISSN: 1361-6560.*
- 4. Toth, T., Ge, Z. and Daly, M. P. (2007), The influence of patient centering on CT dose and image noise. Med. Phys., 34: 3093– 3101. doi:10.1118/1.2748113
- 5. Brenner DJ, Hall EJ. Computed Tomography An Increasing Source of Radiation Exposure. 2017:2277-2284.
- 6. Habibzadeh MA, Ay MR, Kamali AR, Ghadiri H, Zaidi H. The Influence of Patient Miscentering on Patient Dose and Image Noise in Two Commercial ct Scanners. 2010:327- 330.
- Pari V. Pandharipande, Andrew T. Reisner, William D. Binder, Atif Zaheer, Martin L. Gunn, Ken F. Linnau, Chad M. Miller, Laura L. Avery, Maurice S. Herring, Angela C. Tramontano, Emily C. Dowling, Hani H. Abujudeh, Jonathan D. Eisenberg, Elkan F. Halpern, Karen Donelan, and G. Scott Gazelle. CT in the Emergency Department: A Real-Time Study of Changes in Physician Decision Making. Radiology 2016 278:3, 812-821
- 8. Gies, M., Kalender, W. A., Wolf, H., Suess, C. and Madsen, M. T. (1999), Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med. Phys., 26: 2235–2247. doi:10.1118/1.598779

