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Abstract

Background

Selecting and maintaining an engaging and challengingitigidifficulty level in robot-assisted
stroke rehabilitation remains an open challenge. Despéebility of robotic systems to provide
objective and accurate measures of function and perforeydine selection and adaptation of
exercise difficulty levels is typically left to the exper@nof the supervising therapist.

Methods

We introduce a patient-tailored and adaptive robot-assigierapy concept to optimally challenge




patients from the very first session and throughout therapgrpss. The concept is evaluated within
a four-week pilot study in six subacute stroke patientsgraring robot-assisted rehabilitation of
hand function. Robotic assessments of both motor and semspairments of hand function
conducted prior to the therapy are used to adjust exerciserders and customize difficulty level
During therapy progression, an automated routine adafitsutty levels from session to session tq
maintain patients’ performance around a target level of ,A@%6ptimally balance motivation and

challenge.

U7

Results

Robotic assessments suggested large differences insagensorimotor abilities that are not
captured by clinical assessments. Exercise customizhisad on these assessments resulted injan
average initial exercise performance around 70% (&2%90, mear-std), which was maintained

throughout the course of the therapy (64%24.%0). Patients showed reduction in both motor and
sensory impairments compared to baseline as measurechimatknd robotic assessments. The
progress in difficulty levels correlated with improvemeints clinical impairment scale (Fugl-Meyg
Assessment) {r= 0.70), suggesting that the proposed therapy was effedtrexlacing
sensorimotor impairment.
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Conclusions

Initial robotic assessments combined with progressiviicdify adaptation have the potential to
automatically tailor robot-assisted rehabilitation te thdividual patient. This results in optimal
challenge and engagement of the patient, may facilitateosgnotor recovery after neurological
injury, and has implications for unsupervised robot-dsdisherapy in the clinic and home
environment.

Trial Registration : ClinicalTrials.gov, NCT02096445
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Hand function, Patient-cooperative

Background

Active participation is known to be a key parameter that irfices the outcome of rehabilitation therapy
in stroke survivors [1-4]. To maximize engagement durireyaipy and prevent frustration, it is essential
to design rehabilitation exercises in such a way that thejleige patients at a difficulty level in which
exercises are neither too simple, nor too difficult [5,6]rtRearmore, motor learning studies have shown
that matching the difficulty of a task to the learner’s idikill level, and further adapting it as learning
progresses, enhances learning efficacy [7]. In clinicdirnges, the selection of exercise difficulty and
its adaptation over the course of a therapy is a challengisky, often left to the experience of trained
therapists and their subjective perception of a patiemittias [8].

The emergence of robotic devices and virtual reality emvitents to complement conventional reha-
bilitation has opened up new perspectives for the autorsatixction and on-line adaptation of therapy
difficulty [9]. In addition to motivating and well-contrat exercises, robotic devices can provide ob-
jective and accurate assessments of function and impaifii@jn They offer the possibility to continu-
ously monitor patient performance, and correspondinggpatherapy intensity and difficulty after each
session or even each trial, in a way that optimally challsnggients throughout the therapy [11].



Several strategies have been proposed for adapting therdjylty to a patient’s individual needs
and/or abilities during robot-assisted rehabilitationcddfnmon approach consists in varying the amount
of assistance a robotic system can provide to the patieran itassist-as-needed” fashion [12]. The
assistance provided to complete a specific task is progedgslecreased (per session, or even online),
thereby increasing task difficulty to optimally engage ahadllenge patients. Assistance modulation can
be based on the patients’ active participation and perfooman the task, as measured by interaction
forces, muscle activity, or other kinematic or physiol@diparameters [13-16]. However, increasing the
level of robotic assistance in case of poor performancidgaation could eventually lead to slacking,
where patients progressively become passive (decreasdetiad of muscle activation and thus active
contribution) and rely on the assistance of the robot, dedping able to actively participate in the
task [17,18].

Another approach to adjusting therapy difficulty relies ondifying spatiotemporal parameters of
the task to be achieved during a rehabilitation exerciséomit changing the level of robotic sup-
port/guidance. This could take the form of progressivelyrencomplex movement patterns to be
achieved [11,19], more distant positions to be reache®(t23], a smaller time window to complete
a task [21,24], or increased interaction force requirechftbe patient [6,23,25,26]. Typically, differ-
ent pre-determined levels of increasing difficulty are iempénted, similar to video games, and patients
navigate from level to level (on a session or even trial hagisording to performance scores computed
from kinematic or dynamic metrics.

However, if an exercise is started at a default difficultyelev.e. the same difficulty level is selected
for all patients despite their diverse impairments, exagimight be too difficult or too simple for an
individual patient, and several therapy trials/sessiomghtrbe necessary to adapt the exercise to the
difficulty level which is appropriate. One way to solve ttssue consists in performing initial robotic
assessments, prior to therapy start, to identify eachrg&tiability to perform a specific task with the
robot, and subsequently adapting the initial task difficthroughout the therapy [21,22,24].

In this paper, we present a novel therapy adaptation appia@obining (i) initial robotic assessments to
establish sets of patient-specific difficulty levels forrdpey exercises as well as to select initial exercise
difficulty, and (ii) subsequent session-wise challengeptateon throughout the course of a therapy, by
automatically progressing through the patient-specifificdity levels based on daily exercise perfor-
mance. As a proof of concept, this approach was clinicalgluated in the context of a four-week pilot
study on neurocognitive robot-assisted therapy of handtimm with the ReHapticKnob, a 2 degrees-
of-freedom (DOF) robotic device [27,28]. For the initiabatic assessments, both motor and sensory
function of the hand were evaluated prior to the start of leeapy, by evaluating active range of motion
in hand opening and forearm pronation/supination, andlestglerceptible differences in distance (fin-
ger aperture) and stiffness (object grasping). Outcomesurea from the robotic assessments were then
used to define patient-specific difficulty levels for a setefen neurocognitive rehabilitation exercises
implemented on the ReHapticKnob. During the therapy sassi@simple algorithm aimed at adjusting
the difficulty level to maintain patients’ performance irckaxercise at a success rate of 70%, which is
often referred to as an optimal balance between motivatimhchallenge [6,20,21]. We hypothesized
that the combination of initial assessment-driven diffiggklection and subsequent performance-based
progression in difficulty levels would allow to approprigtehallenge patients from the very beginning
of the therapy and maintain this challenge over therapy@essvhile impairment levels are expected to
decrease. Within the limits of device capabilities, thipraach should generalize to most rehabilitation
robots.



Methods

Participants

Six subacute stroke patients (7282.0 years old (meafstd)) were enrolled in this pilot study. Inclu-
sion criteria included a hemiparesis caused by a first oenae of stroke<€6 weeks) and age between
18 and 90 years. Exclusion criteria comprised an altered sfaconsciousness, severe aphasia (Good-
glass and Kaplan testl, [29]), severe cognitive deficits (Level of Cognitive Ftinn-Revise& 6, (Ha-

gen C: Level of Cognitive Functioning-Revised, unpublflesevere pain syndrome (Visual Analog
Scale>5, [30]), or severe pathologies of the upper extremity afrimatic or rheumatic origin.

All participants showed mild upper limb impairment (5&8.7 on the Fugl-Meyer Assessment (FMA-
UE) [31]) resulting from ischemic stroke. Prior to being @ted, all patients were informed about the
study and any related potential risks, and they providedtewriconsent. The study was approved by
the ethics commission of the Canton of Ticino (Ref. CE 2648) & registered at ClinicalTrials.gov,
NCT02096445. Table 1 details the patient demographics.



Table 1 Patient demographics

Patient Age Gender Handed Impaired Post lesion Initial Initial FMA 1 Neurological disorder
[years] -ness hand [weeks] FMA-UE! subscore
(hand/ wrist)

P1 85 F R L 2 57 20 Ischemic stroke in the right corona radiatifieomtal
centrum semiovale

P2 67 M R L 2 55 20 Ischemic stroke in right thalamus

P3 80 M R L 5 59 19 Ischemic stroke in right ponto-cerebellgiace

P4 70 M R R 6 52 16 Ischemic stroke in left parietal lobe

P5 53 M R L 4 52 17 Ischemic stroke in right pre and post-cegyals and
right parietal lobe

P6 82 M R L 3 61 20 Ischemic stroke in cortico-subcortical terap
parietal lobe

Mean 72.8 - - - 3.7 56.0 18.7 -

(Std) (12.0) - - - (1.5) (3.7) (1.8) -

1 Fugl-Meyer Assessment (FMA) [31]. FMA scores for the uppdreamity (maximum score = 66) and hand/wrist (maximum seof4#) subsections are reported (lower scores indicateagreat
impairment).



Study protocol

The proposed assessment-driven selection and adapttiwrapy difficulty was implemented within a
four-week pilot study on neurocognitive robot-assistestdpy of hand function carried out at the Clin-
ica Hildebrand Centro di Riabilitazione Brissago in Switaed. This study was performed with the
ReHapticKnob, a two DOF hand rehabilitation robot to traiasping and/or forearm rotation (prono-
supination of the forearm) (Figure 1) [27]. The ReHaptickn® based on an end-effector design with
exchangeable finger supports (e.g. a small support for tiralitand a large support for the opposing
fingers as used in this study) to accommodate different hiaed.sFingers can be fixed to the supports
with Velcro straps. In addition to standard safety mechmagrigemergency button and mechanical end-
stops), implemented software limits on grasping apertaspectively forearm rotation) and interaction
force (respectively torque) guarantee the safe use of thiead§27]. A physiotherapist assured that
patients were able to perform the implemented exercis¢wwuiitoverstretching or pain.

Figure 1 Neurocognitive therapy with the ReHapticKknob. A: direct vision of the hand is blocked
through the placement of the computer monitor over the pediband. The screen shows information
relevant to the execution of the respective exercBeand C: thumb and fingers are attached to the
finger supports of the ReHapticKknob and held in place witttidestraps.

On four days per week, patients received a 45 minute ses$iopusocognitive robot-assisted ther-
apy with the ReHapticknob. Neurocognitive therapy follothve concepts developed by Perfetti [32],
and trains patients in solving cognitive tasks through miaysnteraction with their environment (e.g.
object exploration and identification). Exercises tydicakquire patients to rely on tactile and/or pro-
prioceptive feedback from their impaired limb followingt&e or passively guided movements. The
implementation of neurocognitive exercises on a robotidageis particularly suitable, as robots can
render a large variety of haptic cues to simulate physidatattion with the environment [28].

Each therapy session with the robot was composed of a sulibete exercises lasting up to 15 minutes
each and conducted in a randomized order. The three exetcigeed in each session were selected
among seven neurocognitive exercises; F7, implemented on the robot and focusing on important
aspects of hand sensorimotor function (i.e. proprioceptitaptic perception, sensorimotor memory
and sensorimotor coordination; refer to Section on Neugpitive robot-assisted rehabilitation and Fig-
ure 2). An exercise plan for all therapy sessions, commorl fpagticipants, was defined prior to the
study start in order to ensure that each exercise was régtri@ined.

In parallel to the robot-assisted therapy sessions, patietiowed the usual daily rehabilitation program
for subacute inpatients at the Clinica Hildebrand Centmidbilitazione Brissago. This consisted of a
45 minute session of conventional neurocognitive theraiftyout the robot, as well as additional therapy
sessions not focused on the upper limb, but which could tiesless also involve upper extremity
exercises, e.g. during physiotherapy or occupationaather

To evaluate and monitor upper limb impairment, clinical (*ME) and robotic assessments were con-
ducted at three time points and on separate days from thepieoefore (fre) and after the four weeks
of the study posd, as well as in an additional follow-up assessment four wexter the completion of
the robot-assisted therapipllow-up).

Robotic assessments

Three robotic assessment4;fA3) were implemented on the ReHapticKknob with the aim of evalua
ing the active range of motion while manipulating the fingaports, as well as proprioception and
haptic perception. Data from the initial robotic assesdmamre used to establish patient-specific diffi-



culty levels and to select the initial difficulty for each exise. These assessments are described in the
following.

Ay - Range of motion (ROM,, and ROM )

The active range of motion in pronation/supination on tHeotavas assessed by asking the patient to
rotate the end-effector to the maximum reachable pronati@ie oy, ..., followed by the maximum
supination angley; 4. Similarly, the active range of motion in grasping was meadwas patients
moved from their minimal grip aperture on the rohgt;, to their maximal grip aperture, ... The
range of motion along these two DOF was defined as:

ROM@ = Pp mazx — Ps max (l)

ROM:B = Tmazx — Tmin (2)

As - Proprioception

Hand proprioception was assessed by measuring the juseéptidrle distance difference threshold,
respectively difference limen (distandeL), at 80 mm grasping aperture using methods from psy-
chophysics. A two-alternative forced choice (2AFC) pagadiwas used, which consists in consecu-
tively and randomly presenting two different stimuli, argtard stimulusSt and a comparison stimulus
Co, after which patients were asked to indicate which of thedtiauli was perceived as the larger [33].
The 2AFC paradigm has been selected as it is expected to eabj@ctive and almost bias-free com-
pared to other psychophysical paradigms [34].

In the case of the proprioception assessment, the robadielsspened the patient’s hand from an ini-
tial grasping aperture of 62 mm, selected as a suitable gegare for most patients, to a standard grip
apertureSt = 80 mm or to a comparison apertut® = St + Ad. It has been shown that the distance
DL is dependent on hand position, i.e. grip aperture [35]ndde assessment, was conducted at a
standard initial grip aperture, corresponding to the pmsiiater used in the robotic exercises, such that
the exercise difficulty could be appropriately adjusted. iditial stimulus differenceAd = 6 mm was
chosen and adjusted adaptively using parameter estimayieequential testing (PEST). This method
was selected for its fast and accurate algorithm convesg86]. Based on the level of correct stimulus
identification of the patient, PEST specifies a set of haanistes which define if the previously tested
stimulus difference\d should be kept constant, respectively increased or destdgsan adaptive step
s. The selectable PEST parameters were chosen such thagtngheth converged to &d where pa-
tients provided 75% correct answers. Convergence to thieshperceptible distanc® L was achieved
when 15 consecutive trials at the same stimulus differenme wxecuted, or if the stepfell below a
predefined minimum steg. If the algorithm did not converge, the assessment was tatetl after 20
minutes to prevent fatigue, and the distari¢gé was set to the last testedld. For the proprioception
assessment, an initial step= 2 mm and a minimum step = 0.5 mm were selected based on good
convergence during test runs with healthy subjects.

Agz - Haptic perception

A similar approach as for the proprioception assessmentsasto evaluate patients’ ability to perceive
and differentiate haptic stimuli during active object griag. Two virtual springs, with standard stiffness
St and comparison stiffnesSo = St - (100% + Aky,) were rendered by the robot. The ability to
discriminate stiffness is affected by the patient’s comssior unconscious discrimination strategy, which
might favor force and/or position cues [37]. Further, thealest detectable stimulus differences for
stiffness follow Weber’s law, i.e. the detectable differervaries relative to the tested standard stimulus



[37]. Hence, the assessed (relative) stiffness differehég was represented in percentages of the
standard stiffnes§t = 300 N/m and converged to the patients’ stiffness Weberitnagstiffnessiv’ f).

An initial stimulus difference\ky, = 35%, an initial steps = 10% and a minimum step = 2.5% were
empirically selected based on prior tests with healthyestibj

Neurocognitive robot-assisted exercises

Seven exercisel’-E; (briefly described in this section and in more detail in Fegg@) motivated by
conventional neurocognitive exercises [32] were impletagron the ReHapticKnob. The exercises
train four key concepts; (i) proprioception, (ii) hapticrpeption, (iii) sensorimotor memory, and (iv)
sensorimotor coordination. All exercises involve solvangognitive task based on sensory inputs from
the hand. Vision of the tested hand is obstructed in all ésesdy a computer monitor placed over the
hand, which is further used to provide instructions and lbaet related to each exercise (see Figure 1).

Figure 2 Detailed description of exercise1-E7. The heuristically defined exercise parameters used
to customize the difficulty levels are shown within curly ¢kats in the "Exercise parameters" column.
Refer to the flowchart in Figure 3 for a description of the g@attitailored and adaptive therapy concept.

FE, & E5 - Proprioception

Patients are asked to identify different grip aperturEs) (or different pronosupination angle#’{)

to which their hand is passively moved by the robot. Patieetbally report the perceived stimulus by
selecting one of the possible positions shown on the moriitofamiliarize with the tasks and memorize
the haptic stimuli, up to ten test trials (not used for exsr@erformance estimation as elaborated below)
with visual feedback of the presented aperture were pravideach session. These passive exercises are
thought to be feasible even by severely impaired patiertsont requiring assistance from supervising
physiotherapists.

E3 & E4 - Haptic perception

Patients are asked to actively grasp the end-effector afaihet to identify different viscoelastic force
fields representing virtual sponges rendered by the robdtdéplayed on the monitorEj). In £y a
similar concept is trained, where the end-effector of tHmtas rotated by 90so that patients identify
different virtual springs by vertically pressing down o thprings with their index finger. Similarly to
E4 andEs, test trials are also provided in each session, where visadback on the presented stimulus
is provided on the monitor.

Es5 & Eg - Sensorimotor memory

In a first phase of this exercise, the patient’s hand is palgswmoved from a starting position to a
target grip apertureHs) or to a target pronosupination angles), and held there for 2 seconds before
returning to the start position. Details on the target s&lagrocess can be found in Figure 2. In the
second phase, patients are asked to actively reproduceabenment by displacing the finger supports
to the same target position/angle, and hold this positi@iéafor 2 seconds within a specific position
error window.

E - Sensorimotor coordination

Patients are asked to actively pronate/supinate theiaforéo reach a target angle indicated haptically
by a small valley/gap along the translational DOF (see [@Bhtlditional details). This exercise requires



patients to combine and coordinate sensory feedback fretirihers while actively performing position
exploration with the forearm.

In the elaboration of the therapy plan, it was decided toquarfmore sessions with exerciséy
and E, setting a focus on compliance identification during gnagms well as the coupled training
of forearm rotation and grasping, which were identified a&s éRercises corresponding best to daily
activities. To maximize participation in the exercisesygiitherapists could assist patients’ movements
or prevent their hand from slipping off the finger supportpatients could not execute the movements
on their own, but were requested not to assist patients indbritive tasks related to each exercise.

Initial selection and automatic adaptation of difficulty levels

Both an initial and an automatic difficulty adaptation wesed to individualize and adapt the robotic
therapy in an attempt to optimally challenge patients thhmut the entire therapy, targeting an exercise
performance o = 70% starting from the very first therapy session (Figure 3).

Figure 3 Patient-tailored and adaptive therapy concept. The difficulty levels of the neurocognitive
robot-assisted exercises (detailed in Figure 2) are clsgzhiefore the therapy onset using the assessed
rotational range of motion{O M), the just perceptible difference threshold in graspingrape (O L)

and the stiffness Weber fractiomi{f). An automatic difficulty adaptation routine adjusts therexse
difficulty level on a session-by-session basis accordirthegerformance during the last session of the
respective exercise (performance computed over the entaeise session).

Before the robotic therapy sessions were started, exguaiseneters, such as movement amplitude or
magnitude difference between haptic stimuli (see Figuraa®3), were selected to adapt the exercise
parameters of the initial difficulty levdl; = 1 ( € {1, 7}) to initial functional ability of each individual
patient according according to the outcomes of robtecassessmentsOM,,, DL andWV f). Based

on this initial difficulty level, more advanced difficultyMels were computed by incrementally changing
exercise parameters with respect to those of the initial Isigure 3). Heuristic parameter increments
were scaled with the outcomes of the individpaé assessments?OM,,, DL, W f). Therefore, all
difficulty levels were “tailored” with respect to the initiability of the patient, as explained in detail
in Figure 2. As an example of how to interpret Figure 2, a patessessed with a distanéel of
4.25 mm duringA4, will start exerciseE; with an initial difficulty level (L1=1) with N = 3 different
grasping apertures to discriminate, i.e. 71.5 mm, 80 mm &8 B8im. These grasping apertures
differ by 64 = 2 - distanceDL = 8.5 mm, and are centered aroudd22 = 80 mm, whered; =

102 mm corresponds to a comfortable aperture for the patieand on the finger supports (depending
on hand size). In the second difficulty levdlE2), 4 grasping apertures are presented, differing by
64 = 1.6- distanceD L = 6.8 mm, and again centered around-#2 = 80 mm, i.e., 69.8, 76.6, 83.4 and
90.2 mm.

The progression from one level of difficulty to the next wakeduby an automatic difficulty adaptation
routine, which updates the difficulty level from sessiondesson based on the patient’s performance in
the last therapy sessidp of an exercisey;:

Li+1 ,if P;>170%
Li={ L Jif P € ]20,70[ %
Li—1 ,if P, <20%

wherei € {1,7}. Performance in an exercise was evaluated by the percenitagecessfully completed
trials, i.e. correctly identified stimuli or properly reghaced apertures/orientations. The selection of dif-



ficulty adaptation thresholds was motivated by the work beogroups [6,20,21], and by observations
form our previous work [25].

Results

All six subacute stroke patients were able to participatthénstudy, completing all of the robotic as-
sessments and therapy sessions. In the first robotic assatsgratients exhibited different performance
levels, as shown in Figure 4, suggesting different initapairment levels. Overall, patients typically
showed reduced rotational range of motion compared to theakhavior (on average -2.9%, [38]),
larger smallest perceptible distance difference thresbal (on average +260%, [35]), and larger stiff-
ness Weber fractiond’ f (on average +364%, [37]).

Figure 4 Results of the robotic assessments A1-A3 during thpre assessment (week 0). Top:
pronosupination (left) and grasping aperture (right) mafymotion.Bottom: Patient-wise evolution of
the presented stimulus differencAsl and Aks, to assess proprioception during hand opening/closing
and haptic perception during grasping. Presented stimelets are adaptively selected by the PEST
algorithm and converge to the smallest perceptible diffeee Four assessment runs did not converge
within the predefined time constraint of 20 minutes and agéecated with a cross (x) for the last trial.
Healthy performance is indicated with dashed lines for carspn (forearm pronation 7Ppforearm
supination -85 [38], distanceDL = 1 mm [35], stiffnessiV f = 7% [37]), except for translational
ROM, which depends on the hand size.

The outcome of the first robotic assessment was used to deBnaitial difficulty level of the seven
exercises in order to offer challenging tasks from the ong#terapy. Averaged over all patients and
exercises, the initial performance level, measured as éheeptage of successfully achieved trials in
the first occurrence of each exercise, was 628% (meart:std). The difficulty progression algorithm
developed in this work was able to maintain the average paeoce of a session (at the group level)
around the desired 70% (64% on average over all sessiongnomn57% and maximum 71%, Fig-
ure 5), while patients progressed through difficulty leelseach exercise. Despite this good average
performance, it should be noted that the variability wageghigh (on average-21%), indicating that
some of the exercises were not as well adapted to the patisnighers. Figure 5 further illustrates
this and shows the performance and difficulty level progoesef each exercise for one representative
patient (P4).

Figure 5 Therapy exercise performance. Top: Average therapy session performance (mean and stan-
dard deviation over all patients) tracks the desired 70%l Ieft y-axis). During therapy progression,
difficulty levels (averaged over all patients) continuguisicrease (right y-axis, blue circlesRottom:
Exercise-wise performance evolution and correspondifiigulty level adjustments for a representative
patient (P4). Note that only a subset of 3 exercises was ipeeid during each therapy session.

Both robotic and clinical assessments showed improvenosetsthe course of the study (Figure 6). On
average, patients showed an improvement onfi@e\/,, (pre to post +29.7, pre to follow-up +9.6%),
maintained their baseline assessment performance oRdhd, (pre to post -1.7 mm,pre to follow-

up: 0 mm), improved their compliance perceptigrgto post -13.5%,pre to follow-up -11.3%) while
proprioception initially worsened slightly but eventyalnproved preto post +0.17 mm preto follow-

up: -0.8 mm). A mean improvement in the total FMA-UE score of poits preto pos) and 3.0 points
(preto follow-up) was observed, with an improvement of the hand/wrist sulesobthe FMA-UE of 3.5
points preto pos) and 3.8 pointsgre to follow-up). Note that the larger improvement in the hand/wrist
subscore than in the overall FMA scorefalow-up is mainly explained by one patient who showed
a decrease of 10 points in FMA &llow-up. A correlation ¢; = 0.85, p= 0.04, Spearman’s rank



correlation) was found between the change in FMA-UE sulestmrthe hand/wrist and the number of
difficulty levels that were progressed over all exercised( rina), @ € {1, 7}). Similarly, a correlation
was observed betweer(L; rinq) and the total FMA-UE scorer( = 0.70, p= 0.15, Spearman’s rank
correlation) (Figure 7).

Figure 6 Improvement in clinical and robotic assessment sges. mean and 95% confidence interval
of the change in the clinical (total FMA-UE score and FMA hawist subscore) and robotic assessment
scores (rotational and translational range of motion, poopption (A2) and haptic perception (A3))
from pre to postassessment (left panel) and from thre to follow-upassessment (right panel). Positive
changes (negative changes in the case of A2 and A3) indiodta@ovement on the assessment scale,
i.e. an impairment reduction.

Figure 7 Difficulty level increase correlates with clinicalscores. The difficulty level improvement
summed over all 7 exercises correlates with the changeseifrMhA-UE (total score and hand/wrist
subscore) from there to the postassessment:; is the Spearman’s rank correlation coefficient. The
line through the data points was fitted by linear regression.

Discussion

In this paper we presented a novel assessment-driven maghsslect and adapt difficulty levels in
robot-assisted therapy. The proposed approach combiitied iobotic assessments to select patient-
specific therapy levels adapted to the individual's defigitith a simple automatic adaptation routine
allowing patients to progress through these levels basdenperformance, as objectively measured
by the robot. A proof of concept was implemented in the candéxa 4-week pilot study focusing on
rehabilitation of hand function with 6 subacute stroke gatss.

The need for patient-specific difficulty levels

Stroke survivors can be highly heterogeneous in terms agfasgnotor and cognitive impairments, as
well as in their prognosis for recovery [39]. In the presdntly, despite presenting similar initial FMA-
UE scores (56 £83.7) at baseline, stroke patients showed substantiakeliftes in proprioception and
haptic perception as revealed by the robotic assessméantsthe ReHapticKnob. First, this underlines
that the FMA-UE scale, often used to evaluate upper limb motpairment, does not capture hand sen-
sorimotor deficits well [40]. Secondly, the robotic assemsts focusing on sensory perception highlight
that, despite exhibiting rather mild motor deficits, mostha participants still suffered from sensory
impairments. Sensory impairment is often not a focus inbigitetion [41], despite growing evidence of
its importance for motor learning and recovery [42]. In g@sse, the proposed neurocognitive approach
to robot-assisted hand rehabilitation, with its primargalgaf perceiving and interpreting sensory infor-
mation from the impaired limb, proposes a novel way to asaedgehabilitate hand function. It is also
interesting to note that the psychophysics methods usdteinobotic assessments to evaluate sensory
thresholds converged in most of the cases, leading to assassessions of short duration (typically
below 15 minutes per assessment), underlining the feigibilsuch an approach in clinical routine. An
initial assessment provides objective values that serbasaline and allow to track functional changes
from the very beginning of the therapy. However, a validaid the proposed robotic assessments in a
larger population is necessary to test their validity aridlodity.

Altogether, results of the robotic assessments illustiag in order to confront patients with an appro-
priate level of challenge from the beginning of the first #gr session, individualized levels of difficulty

for each neurocognitive exercise are needed. It was shovathigy groups that, in the absence of such
an initial assessment-based difficulty selection, a langmbrer of therapy trials or sessions may be



needed to reach challenging difficulty levels, even with &apting difficulty modulation algorithms.

In their study with the ADAPT system, an end-effector preisgndifferent real-life objects to manipu-
late against various resistance levels, Choi and colleagliewed that on average 30 trials were needed
for chronic stroke patients to reach a challenging difficlétvel [6]. In a robot-assisted framework
where therapy exercises are composed of a large number afitieps (i.e. over 100), this time for
adaptation is likely not an issue. However, such a delaydolrehallenging exercise parameters is not
suitable in the context of neurocognitive exercises, whegdherapy goal is to focus on movement qual-
ity, and the cognitive processing of perceived sensoryrimé&tion results in a lower number of therapy
trials per session, which can be as low as 20 trials per eseesid session [28].

Control of patients’ performance level

The primary objective of this work was to present strokegudti with rehabilitation exercises that are
neither too simple nor too difficult, as this is expected tammze active participation and motivation for
training while minimizing frustration, three aspects thee commonly recognized as being critical for
the success of a rehabilitation intervention [5,43]. Inlifegature, various types of algorithms have been
tested for online decision making to modify task parametérs robot-assisted rehabilitation exercise
and modulate its difficulty. As each algorithm has its owncdpe advantages related the platform
on which it is implemented and on the type of data availablev@luate patient performance, there
is no obvious golden standard for online difficulty adajptati Several groups developed sophisticated
methods, such as partially observable Markov decisiongases [23], or state-space models of recovery
where the evolution of a combination of kinematic paranssetracked to adapt exercise difficulty when
parameters reach plateau performance [11,19]. Other grosed update functions with a variable
forgetting factor, computed based on performance in pusvidals [6], or based on the evolution of
kinematic or physiological parameters [13]. Simpler ajpgtes consist in comparing the performance
achieved in a block of trials to a target performance definethk therapist prior to the session and
adapted to the patient’'s impairment level, or determinestan the patient’s prior performance in the
specific exercise [20,22]. The rate at which the adaptatiatifiiculty is achieved also varies widely in
the literature, with algorithms adapting difficulty on atrper trial basis [6,13], per blocks of a few trials
[21,22], or at the beginning of a session based on the peaiacmof the previous session [11,19,23].

While all of the proposed methods for therapy adaptationnted good ability to modulate difficulty, we
chose to implement a therapy adaptation approach basedientgapecific levels of difficulty, in which
progression from level to level is based solely on the pasggnof successful trials achieved during the
previous session, i.e. performance in each exercise. Tikesign is easy to understand by patients and
therapists as opposed to algorithms based on abstract graaptimization, and could contribute to
maximizing engagement and motivation. Also, this type gbathm was shown to be well-accepted
and to provide good results in clinical application [21,44 our algorithm, a target performance value
of 70% was selected. This choice was motivated based on sultsdrom prior studies with stroke
patients [24,25], as well as by values reported in liteeafdb].

Thanks to the initial difficulty adjustment, patients ditgcstarted with an average success rate close
to the targeted 70% (62% averaged over all exercises). Taerlines that from the first few trials,
patients were properly challenged during the therapy sessind could appropriately engage in the
task. Over the course of the 15 therapy sessions, the prbpd&eulty adaptation algorithm maintained
patients’ average performance close to the targeted 70&bifvihe range of [57,71]%) by automatically
increasing levels of difficulty according to measured penfance. As our approach personalizes the
rate of difficulty increase in the levels of each exerciseetam the initial results of robotic assessments
(ROM,, DL andW f), we ensure that the ability of patients to improve in levefiglifficulty is not
influenced by the initial level of impairment.



The achieved degree of control over session performanoaghout the course of the therapy is in line
with the results of Choi and colleagues, who observed, oragee a variation of 33% in success rate
around the challenge point identified by their algorithm [6]

Reduction in hand and arm impairment

Over all exercises, patients improved between 7 and 27 wiffitevels during the course of the 4 weeks
of therapy. This progression could be attributed parthataifiarization with the robot and exercises, and
to a reduction in upper limb impairment. While these twodastare difficult to decouple, we observed
that the number of levels progressed by patients was ctecelaith improvements on the FMA-UE,
and especially the FMA-UE subscore for the hand/wrist (Fégl). These correlations suggest that an
increased performance in the exercises (increase in diffi@vels) does not simply correspond to a
learning of exercise mechanisms (e.g. elaborating a girdtebetter achieve the task), but that the
proposed therapy led to a decrease in impairment. Impatrwasnfound to be reduced especially at the
level of the hand and wrist, where the interaction with tHeotdakes place, but also at the level of the
proximal part of the arm, in line with results of previous w§25,46].

Comparison of robotic measures betweengheand postassessments further supports these conclu-
sions, with patients performing better (i.e. showing seraitinimal detectable differences) after the end
of therapy, suggesting improved hand sensory functions Bhan important result, as the implemented
neurocognitive exercises specifically focused on traisi@gsory perception. Difficulty increments be-
tween levels were designed to present sensory stimuli thobee patient’s sensory thresholds measured
during the initial assessments.

The correlations between clinical scores and progressiaifficulty levels suggest that the latter could
be seen as an indirect way to monitor recovery on a daily pastisout the need to perform additional
time-consuming clinical or robotic assessments.

Limitations of this pilot study

Despite promising results for the control of overall penfance at the group level, a relatively large
performance variability could be observed. This was du@toesof the neurocognitive exercises being
over- or under-challenging for patients, and thus requirgsovement for future studies. For example,
the initial parameters of exercidé, were pre-defined and not adjusted to the ability of the patien
measured in the robotjare assessment. This resulted, at least initially, in exesdisat were too simple
for some participants, as shown for the representativeestibj4 (Figure 5). In return, exercisés
and Eg (sensorimotor memory) were found to be overly difficult.(eeerage performance below 47%)
for most patients, due to the small error band allowed foréipeoduction of movements, which made
the task too demanding. Nevertheless, the initial adaptaif the exercise parameters resulted in an
average performance close to the desired 70% level.

Another limitation of the present study lies in the relajew number and limited range of initial motor
impairment of patients that could be recruited for this fpdtudy (between 52 and 61 on the FMA-UE
scale). It should nevertheless be noted that the proposedceugnitive exercises were also designed to
allow patients with more severe motor impairment to acyiegigage in robot-assisted therapy, as shown
in our previous work [28].



Conclusions

The results of this pilot study suggest that robotic assestsf hand sensorimotor function can be used
to tailor robot-assisted therapy parameters to the alafigach individual patient. This allows to opti-
mally balance exercise difficulty from therapy onset. Fertlautomatic and progressive modulation of
therapy difficulty assures that patients perform at a sigcle@®! that should keep the therapy engaging,
rewarding and motivating. While the proposed concept ofpétailored and adaptive robot-assisted
rehabilitation was evaluated in the context of a pilot stadyeurocognitive robot-assisted rehabilitation
of hand function, it is generalizable to other robotic patfis and limb segments using robotic assess-
ments and adaptation parameters specific to the capabiitithe platform. This approach further has
the potential to impact the design and implementation afrutherapeutic protocols for unsupervised
therapy, both in the clinic and the home environment.
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Exercise description

Visual feedback

Initial adaptation

Exercise parameters

Performance
metric

E1: Proprioception The difference between 5 difficulty levels: Percentage
(Passive grip aperture identification) — target apertures is a function of correct
e of the assessed distance DL: | Number of target apertures identification
The robot closes the hand from an initial grasping — 84 = f(distance DL) N ={3,4,5,5,5} trials
aperture di (adjustable in the range [102, 122] mm —
based on hand size) to one out of N target The assessed distance DL Target aperture difference
apertures. The N target apertures differ by 8¢ and (assessment Az) is limited to | 8¢ ={2,1.6,1.2,1.1,1} x (distance
are centered around di-22 mm. N sticks indicate the N grasping the range [2,10] mm DL)
apertures. Identification feedback: a green
check mark (correct ans.) or a red cross
(wrong ans.) is displayed next to the
correct (target) stick.
E2: Proprioception none 5 difficulty levels: Percentage
(Passive pronosupination angle identification) of correct
Number of target apertures identification
The robot rotates the hand from an initial angle N={3,45,6,7} trials
(-60°, i.e. counterclockwise) to one out of N target
angles. The N target angles differ by 8¢ and are Target aperture difference
centered around 0°. 8¢ = {30,25,20,15,10}°
N triangles indicate the N target angles.
Identification feedback: a green edge
(correct ans.) or a red edge (wrong ans.)
is displayed around the correct (target)
angle.
Es: Haptic perception The relative difference 10 difficulty levels: Percentage
(Stiffness identification during grasping) between the visco- of correct
elasticities is a function of Number of sponges identification
The robot renders N sponges (spring-damper H ”—‘ the assessed stiffness Wf:n | N ={3,3,4,4,5,5,5,5,5,5} trials
combinations) which have to be identified based = f(stiffness Wf)
on their viscoelastic resistance during squeezing. Relative difference between
Rendered stiffness and damping pairs vary by n The d stiffness Wf viscoelasticities
percent from one to another and are centered All N sponges are displayed and animated | (assessment Az) is limited to | n ={2,1.9,1.8,1.7,1.6,1.5,
around Kmedium = 550 N/m and during squeezing. Identification feedback: |the range [7.5, 45] % 1.4,1.3,1.2,1.1} x (stiffness Wr)
Bmedium = 35 N/(m/s). the rendered sponge is colored green
(correct ans.) or red (wrong ans.).
Ea: Haptic perception The relative difference 5 difficulty levels: Percentage
(Stiffness identification during pinching) 5 between the visco- of correct
—— E elasticities is a function of Number of springs identification
The robot renders N springs (spring-damper = = ==ry the assessed stiffness Wf.n [N ={3,4,5,5,5} trials
combinations) which have to be identified based = = : = f(stiffness W)
on their viscoelastic resistance during vertical Relative difference between
index finger pinching. Rendered stiffness and The d stiffness Wf viscoelasticities
damping pairs vary by n percent from one to All N springs are displayed and animated | (assessment As) is limited to | n ={2,1.8,1.6,1.4,1.2} x (stiffness
another and are centered around Kmedium = 300 N/ | when compressed. Identification the range [7.5, 45] % wh)
m and Bmedium = 20 N/(m/s). feedback: the rendered spring is colored
green (correct ans.) or red (wrong ans.).
Es: Sensorimotor memory (Grip aperture) The error band is a function | 5 difficulty levels: Percentage
of the assessed distance of correct
Teach: the robot closes the hand from an initial — S DL: 8e = f(distance DL) Error band reproduced
grasping aperture di (adjustable in the range [102, ) N ( ( 8e ={1.2,1.1,1,0.9,0.8} x trials

122] mm based on the hand size) to a randomly
selected target grasping aperture dt in the range
[70, di-2] mm. After 2 seconds the hand is moved
back to di.

Reproduce: the patient is asked to move to the
Jtaught” target grasping aperture and hold this
position for 2 seconds (position logging). A trial is
correct if the logged position lies within the error
band [di-8e/2, di+de/2]. A damped force field helps

No visual feedback is provided during
Jteach” and ,reproduce” phases.

After trial completion a green check mark
is shown if the trial was correct.
Additionally, the target position is shown
in grey and the registered position in

The assessed distance DL
(assessment Az) is limited to
the range [2,10] mm

(distance DL)

Reduction of damping support:
8={1,0.75,0.5, 0.25,0}

Exercise parameters:
Par = {val1,val2,val3,val4,val5}

7N N

to smoothen the movement of the patient: B=j§ x yellow (or in red if the trial was wrong). level 1 level2 level3 level4 level5
50 N/(m/s).
Es: Sensorimotor memory Assessed rotational ROM, 5 difficulty levels: Percentage
(Pronosupination angle) = (assessment A1) defines the of correct

g ™ range R from which the Range from which ¢ is randomly | reproduced
Teach: the robot rotates the forearm from an initial \ ~ target angle is randomly selected trials
angle (-60°, i.e. counter-clockwise) to a target /’ selected: R=(ROMy) R={1,1.05,1.1,1.15,1.2} x ROM,
angle @ randomly selected from a range R. After 2
seconds the hand is returned to @i. The range R is limited to Reduction of damping support:
Reproduce: the patient is asked to rotate to the No visual feedback is provided during [-60, 60] © B={1,0.75,0.5, 0.25,0}
Jtaught” target angle and hold this angle for 2 Jteach” and ,reproduce” phases.
seconds (angle logging). A trials is correct if the After trial completion a green check mark Error band
logged angle lies within the error band: [p+-8¢/2, ¢t | indicates if the trial was correct. 6e ={10,8,6,4,2} °
+8e/2]. A damped force field helps to smoothen the | Additionally, the target angle is shown in
movement of the patient: B=B x 50 Nm/(°/s). grey and the logged angle in yellow (or in

red if the trial was wrong).
E7: Sensorimotor coordination Assessed rotational ROM, 10 difficulty levels: Number of
(Haptically cued forearm rotation) (assessment A1) defines the successful
range R from which the Applicable range of target angles: | trials within

The patient is asked to explore the rotational DOF target angle is randomly R={1,1.02,1.04,1.06,1.08, exercise
in order to find a target angle ¢t which is indicated selected: R=f(ROM,) 1.1,1.12,1.14,1.16,1.18} x ROM,, | time.
haptically by means of a small haptic valley/gap 20 trials (or
with amplitude A along the translational DOF. The The range R is limited to Reduction of damping support: more) in 15
robot has to be held in [@i-2°, @1+2°] for 2 seconds [-60, 60] © B={0.9,0.8,0.7,0.6, min
to register and verify the correctness of the current | A rotating picture reflects the current robot 0.5,0.4,0.3,0.2,0.1,0} e-3 corresponds
robot angle ¢. A rotational damping field with angle @. A green frame is drawn around [Nm/(°/s)] to 100%.

damping constant B smooths the patient's
movement. A trial is successful when the target
angle is found within 60 seconds. Otherwise the

roqu!rgqypéﬂ? patient passively to ¢t

the picture when the target angle has
been found successfully. Only during task
familiarization the target angle ¢t is
visualized by a black square.

Haptic valley amplitude:
A={1.8,1.65,1.5,1.35,1.2,1.05,0.9,
0.75,0.6,0.45} [mm]




Robotic pre assessment Automatic difficulty adaptation routine

executed after each session (see column 5, figure 2)

Robot-assisted therapy

Default exercise E; Initial adaptation Start with first Exercise at Session Session
ie (1,7} {»{ based on ROM,, DL, W [| difficulty level difficulty level L performance performance
(see column 182, (see column 3, figure 2) L=1 (entire session) P>70% P<20%

figure Define exercise parameters

for all difficulty levels
(see column 4, figure 2)

Figure 3
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Figure 5

Difficulty level



Post — pre

Follow-up — pre

(4 weeks) (8 weeks)
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Change in FMA-UE (post-pre)

0

0

10
Figumptal difficulty level increase

20

30

Change in FMA (hand/wrist) (post—pre)

A FMA hand/wrist
rs=0.85, p=0.04

0

10
Total difficulty level increase

20

30



BioMed Centra publishes under the Creative Commons Attribution License (CCAL). Under
the CCAL, authors retain copyright to the article but users are allowed to download, reprint,
distribute and /or copy articlesin BioMed Central journals, aslong as the original work is

properly cited.



