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Abstract

Background

Selecting and maintaining an engaging and challenging training difficulty level in robot-assisted
stroke rehabilitation remains an open challenge. Despite the ability of robotic systems to provide
objective and accurate measures of function and performance, the selection and adaptation of
exercise difficulty levels is typically left to the experience of the supervising therapist.

Methods

We introduce a patient-tailored and adaptive robot-assisted therapy concept to optimally challenge



patients from the very first session and throughout therapy progress. The concept is evaluated within
a four-week pilot study in six subacute stroke patients performing robot-assisted rehabilitation of
hand function. Robotic assessments of both motor and sensory impairments of hand function
conducted prior to the therapy are used to adjust exercise parameters and customize difficulty levels.
During therapy progression, an automated routine adapts difficulty levels from session to session to
maintain patients’ performance around a target level of 70%, to optimally balance motivation and
challenge.

Results

Robotic assessments suggested large differences in patients’ sensorimotor abilities that are not
captured by clinical assessments. Exercise customizationbased on these assessments resulted in an
average initial exercise performance around 70% (62%±20%, mean±std), which was maintained
throughout the course of the therapy (64%±21%). Patients showed reduction in both motor and
sensory impairments compared to baseline as measured by clinical and robotic assessments. The
progress in difficulty levels correlated with improvementsin a clinical impairment scale (Fugl-Meyer
Assessment) (rs = 0.70), suggesting that the proposed therapy was effective at reducing
sensorimotor impairment.

Conclusions

Initial robotic assessments combined with progressive difficulty adaptation have the potential to
automatically tailor robot-assisted rehabilitation to the individual patient. This results in optimal
challenge and engagement of the patient, may facilitate sensorimotor recovery after neurological
injury, and has implications for unsupervised robot-assisted therapy in the clinic and home
environment.
Trial Registration : ClinicalTrials.gov, NCT02096445
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Background

Active participation is known to be a key parameter that influences the outcome of rehabilitation therapy
in stroke survivors [1-4]. To maximize engagement during therapy and prevent frustration, it is essential
to design rehabilitation exercises in such a way that they challenge patients at a difficulty level in which
exercises are neither too simple, nor too difficult [5,6]. Furthermore, motor learning studies have shown
that matching the difficulty of a task to the learner’s initial skill level, and further adapting it as learning
progresses, enhances learning efficacy [7]. In clinical settings, the selection of exercise difficulty and
its adaptation over the course of a therapy is a challenging task, often left to the experience of trained
therapists and their subjective perception of a patient’s abilities [8].

The emergence of robotic devices and virtual reality environments to complement conventional reha-
bilitation has opened up new perspectives for the automaticselection and on-line adaptation of therapy
difficulty [9]. In addition to motivating and well-controlled exercises, robotic devices can provide ob-
jective and accurate assessments of function and impairment [10]. They offer the possibility to continu-
ously monitor patient performance, and correspondingly adapt therapy intensity and difficulty after each
session or even each trial, in a way that optimally challenges patients throughout the therapy [11].



Several strategies have been proposed for adapting therapydifficulty to a patient’s individual needs
and/or abilities during robot-assisted rehabilitation. Acommon approach consists in varying the amount
of assistance a robotic system can provide to the patient, inan “assist-as-needed” fashion [12]. The
assistance provided to complete a specific task is progressively decreased (per session, or even online),
thereby increasing task difficulty to optimally engage and challenge patients. Assistance modulation can
be based on the patients’ active participation and performance in the task, as measured by interaction
forces, muscle activity, or other kinematic or physiological parameters [13-16]. However, increasing the
level of robotic assistance in case of poor performance/participation could eventually lead to slacking,
where patients progressively become passive (decrease their level of muscle activation and thus active
contribution) and rely on the assistance of the robot, despite being able to actively participate in the
task [17,18].

Another approach to adjusting therapy difficulty relies on modifying spatiotemporal parameters of
the task to be achieved during a rehabilitation exercise without changing the level of robotic sup-
port/guidance. This could take the form of progressively more complex movement patterns to be
achieved [11,19], more distant positions to be reached [11,20-23], a smaller time window to complete
a task [21,24], or increased interaction force required from the patient [6,23,25,26]. Typically, differ-
ent pre-determined levels of increasing difficulty are implemented, similar to video games, and patients
navigate from level to level (on a session or even trial basis) according to performance scores computed
from kinematic or dynamic metrics.

However, if an exercise is started at a default difficulty level, i.e. the same difficulty level is selected
for all patients despite their diverse impairments, exercises might be too difficult or too simple for an
individual patient, and several therapy trials/sessions might be necessary to adapt the exercise to the
difficulty level which is appropriate. One way to solve this issue consists in performing initial robotic
assessments, prior to therapy start, to identify each patient’s ability to perform a specific task with the
robot, and subsequently adapting the initial task difficulty throughout the therapy [21,22,24].

In this paper, we present a novel therapy adaptation approach combining (i) initial robotic assessments to
establish sets of patient-specific difficulty levels for therapy exercises as well as to select initial exercise
difficulty, and (ii) subsequent session-wise challenge adaptation throughout the course of a therapy, by
automatically progressing through the patient-specific difficulty levels based on daily exercise perfor-
mance. As a proof of concept, this approach was clinically evaluated in the context of a four-week pilot
study on neurocognitive robot-assisted therapy of hand function with the ReHapticKnob, a 2 degrees-
of-freedom (DOF) robotic device [27,28]. For the initial robotic assessments, both motor and sensory
function of the hand were evaluated prior to the start of the therapy, by evaluating active range of motion
in hand opening and forearm pronation/supination, and smallest perceptible differences in distance (fin-
ger aperture) and stiffness (object grasping). Outcome measures from the robotic assessments were then
used to define patient-specific difficulty levels for a set of seven neurocognitive rehabilitation exercises
implemented on the ReHapticKnob. During the therapy sessions, a simple algorithm aimed at adjusting
the difficulty level to maintain patients’ performance in each exercise at a success rate of 70%, which is
often referred to as an optimal balance between motivation and challenge [6,20,21]. We hypothesized
that the combination of initial assessment-driven difficulty selection and subsequent performance-based
progression in difficulty levels would allow to appropriately challenge patients from the very beginning
of the therapy and maintain this challenge over therapy sessions while impairment levels are expected to
decrease. Within the limits of device capabilities, this approach should generalize to most rehabilitation
robots.



Methods

Participants

Six subacute stroke patients (72.8±12.0 years old (mean±std)) were enrolled in this pilot study. Inclu-
sion criteria included a hemiparesis caused by a first occurrence of stroke (<6 weeks) and age between
18 and 90 years. Exclusion criteria comprised an altered state of consciousness, severe aphasia (Good-
glass and Kaplan test<1, [29]), severe cognitive deficits (Level of Cognitive Function-Revised<6, (Ha-
gen C: Level of Cognitive Functioning-Revised, unpublished)), severe pain syndrome (Visual Analog
Scale≥5, [30]), or severe pathologies of the upper extremity of traumatic or rheumatic origin.

All participants showed mild upper limb impairment (56.0±3.7 on the Fugl-Meyer Assessment (FMA-
UE) [31]) resulting from ischemic stroke. Prior to being enrolled, all patients were informed about the
study and any related potential risks, and they provided written consent. The study was approved by
the ethics commission of the Canton of Ticino (Ref. CE 2646) and is registered at ClinicalTrials.gov,
NCT02096445. Table 1 details the patient demographics.



Table 1 Patient demographics

Patient Age
[years]

Gender Handed
-ness

Impaired
hand

Post lesion
[weeks]

Initial
FMA-UE 1

Initial FMA 1

subscore
(hand/ wrist)

Neurological disorder

P1 85 F R L 2 57 20 Ischemic stroke in the right corona radiata and frontal
centrum semiovale

P2 67 M R L 2 55 20 Ischemic stroke in right thalamus
P3 80 M R L 5 59 19 Ischemic stroke in right ponto-cerebellar region
P4 70 M R R 6 52 16 Ischemic stroke in left parietal lobe
P5 53 M R L 4 52 17 Ischemic stroke in right pre and post-centralgyrus and

right parietal lobe
P6 82 M R L 3 61 20 Ischemic stroke in cortico-subcortical temporal-

parietal lobe
Mean 72.8 - - - 3.7 56.0 18.7 -
(Std) (12.0) - - - (1.5) (3.7) (1.8) -
1 Fugl-Meyer Assessment (FMA) [31]. FMA scores for the upper extremity (maximum score = 66) and hand/wrist (maximum score= 24) subsections are reported (lower scores indicate greater
impairment).



Study protocol

The proposed assessment-driven selection and adaptation of therapy difficulty was implemented within a
four-week pilot study on neurocognitive robot-assisted therapy of hand function carried out at the Clin-
ica Hildebrand Centro di Riabilitazione Brissago in Switzerland. This study was performed with the
ReHapticKnob, a two DOF hand rehabilitation robot to train grasping and/or forearm rotation (prono-
supination of the forearm) (Figure 1) [27]. The ReHapticKnob is based on an end-effector design with
exchangeable finger supports (e.g. a small support for the thumb and a large support for the opposing
fingers as used in this study) to accommodate different hand sizes. Fingers can be fixed to the supports
with Velcro straps. In addition to standard safety mechanisms (emergency button and mechanical end-
stops), implemented software limits on grasping aperture (respectively forearm rotation) and interaction
force (respectively torque) guarantee the safe use of the device [27]. A physiotherapist assured that
patients were able to perform the implemented exercises without overstretching or pain.

Figure 1 Neurocognitive therapy with the ReHapticKnob. A: direct vision of the hand is blocked
through the placement of the computer monitor over the patient’s hand. The screen shows information
relevant to the execution of the respective exercise.B and C: thumb and fingers are attached to the
finger supports of the ReHapticKnob and held in place with Velcro straps.

On four days per week, patients received a 45 minute session of neurocognitive robot-assisted ther-
apy with the ReHapticKnob. Neurocognitive therapy followsthe concepts developed by Perfetti [32],
and trains patients in solving cognitive tasks through physical interaction with their environment (e.g.
object exploration and identification). Exercises typically require patients to rely on tactile and/or pro-
prioceptive feedback from their impaired limb following active or passively guided movements. The
implementation of neurocognitive exercises on a robotic device is particularly suitable, as robots can
render a large variety of haptic cues to simulate physical interaction with the environment [28].

Each therapy session with the robot was composed of a subset of three exercises lasting up to 15 minutes
each and conducted in a randomized order. The three exercises trained in each session were selected
among seven neurocognitive exercises,E1-E7, implemented on the robot and focusing on important
aspects of hand sensorimotor function (i.e. proprioception, haptic perception, sensorimotor memory
and sensorimotor coordination; refer to Section on Neurocognitive robot-assisted rehabilitation and Fig-
ure 2). An exercise plan for all therapy sessions, common to all participants, was defined prior to the
study start in order to ensure that each exercise was regularly trained.

In parallel to the robot-assisted therapy sessions, patients followed the usual daily rehabilitation program
for subacute inpatients at the Clinica Hildebrand Centro diRiabilitazione Brissago. This consisted of a
45 minute session of conventional neurocognitive therapy without the robot, as well as additional therapy
sessions not focused on the upper limb, but which could nevertheless also involve upper extremity
exercises, e.g. during physiotherapy or occupational therapy.

To evaluate and monitor upper limb impairment, clinical (FMA-UE) and robotic assessments were con-
ducted at three time points and on separate days from the therapy: before (pre) and after the four weeks
of the study (post), as well as in an additional follow-up assessment four weeks after the completion of
the robot-assisted therapy (follow-up).

Robotic assessments

Three robotic assessments (A1-A3) were implemented on the ReHapticKnob with the aim of evaluat-
ing the active range of motion while manipulating the finger supports, as well as proprioception and
haptic perception. Data from the initial robotic assessments were used to establish patient-specific diffi-



culty levels and to select the initial difficulty for each exercise. These assessments are described in the
following.

A1 - Range of motion (ROMϕ and ROMx)

The active range of motion in pronation/supination on the robot was assessed by asking the patient to
rotate the end-effector to the maximum reachable pronationangleϕp max, followed by the maximum
supination angleϕs max. Similarly, the active range of motion in grasping was measured as patients
moved from their minimal grip aperture on the robotxmin to their maximal grip aperturexmax. The
range of motion along these two DOF was defined as:

ROMϕ = ϕp max − ϕs max (1)

ROMx = xmax − xmin (2)

A2 - Proprioception

Hand proprioception was assessed by measuring the just perceptible distance difference threshold,
respectively difference limen (distanceDL), at 80 mm grasping aperture using methods from psy-
chophysics. A two-alternative forced choice (2AFC) paradigm was used, which consists in consecu-
tively and randomly presenting two different stimuli, a standard stimulusSt and a comparison stimulus
Co, after which patients were asked to indicate which of the twostimuli was perceived as the larger [33].
The 2AFC paradigm has been selected as it is expected to be more objective and almost bias-free com-
pared to other psychophysical paradigms [34].

In the case of the proprioception assessment, the robot passively opened the patient’s hand from an ini-
tial grasping aperture of 62 mm, selected as a suitable grip aperture for most patients, to a standard grip
apertureSt = 80 mm or to a comparison apertureCo = St+∆d. It has been shown that the distance
DL is dependent on hand position, i.e. grip aperture [35]. Hence, assessmentA2 was conducted at a
standard initial grip aperture, corresponding to the position later used in the robotic exercises, such that
the exercise difficulty could be appropriately adjusted. Aninitial stimulus difference∆d = 6 mm was
chosen and adjusted adaptively using parameter estimationby sequential testing (PEST). This method
was selected for its fast and accurate algorithm convergence [36]. Based on the level of correct stimulus
identification of the patient, PEST specifies a set of heuristic rules which define if the previously tested
stimulus difference∆d should be kept constant, respectively increased or decreased by an adaptive step
s. The selectable PEST parameters were chosen such that the algorithm converged to a∆d where pa-
tients provided 75% correct answers. Convergence to the smallest perceptible distanceDL was achieved
when 15 consecutive trials at the same stimulus difference were executed, or if the steps fell below a
predefined minimum stepσ. If the algorithm did not converge, the assessment was terminated after 20
minutes to prevent fatigue, and the distanceDL was set to the last tested∆d. For the proprioception
assessment, an initial steps = 2 mm and a minimum stepσ = 0.5 mm were selected based on good
convergence during test runs with healthy subjects.

A3 - Haptic perception

A similar approach as for the proprioception assessment wasused to evaluate patients’ ability to perceive
and differentiate haptic stimuli during active object grasping. Two virtual springs, with standard stiffness
St and comparison stiffnessCo = St · (100% + ∆k%) were rendered by the robot. The ability to
discriminate stiffness is affected by the patient’s conscious or unconscious discrimination strategy, which
might favor force and/or position cues [37]. Further, the smallest detectable stimulus differences for
stiffness follow Weber’s law, i.e. the detectable difference varies relative to the tested standard stimulus



[37]. Hence, the assessed (relative) stiffness difference∆k% was represented in percentages of the
standard stiffnessSt = 300 N/m and converged to the patients’ stiffness Weber fraction (stiffnessWf ).
An initial stimulus difference∆k% = 35%, an initial steps = 10% and a minimum stepσ = 2.5% were
empirically selected based on prior tests with healthy subjects.

Neurocognitive robot-assisted exercises

Seven exercisesE1-E7 (briefly described in this section and in more detail in Figure 2) motivated by
conventional neurocognitive exercises [32] were implemented on the ReHapticKnob. The exercises
train four key concepts; (i) proprioception, (ii) haptic perception, (iii) sensorimotor memory, and (iv)
sensorimotor coordination. All exercises involve solvinga cognitive task based on sensory inputs from
the hand. Vision of the tested hand is obstructed in all exercises by a computer monitor placed over the
hand, which is further used to provide instructions and feedback related to each exercise (see Figure 1).

Figure 2 Detailed description of exercisesE1-E7. The heuristically defined exercise parameters used
to customize the difficulty levels are shown within curly brackets in the "Exercise parameters" column.
Refer to the flowchart in Figure 3 for a description of the patient-tailored and adaptive therapy concept.

E1 & E2 - Proprioception

Patients are asked to identify different grip apertures (E1) or different pronosupination angles (E2)
to which their hand is passively moved by the robot. Patientsverbally report the perceived stimulus by
selecting one of the possible positions shown on the monitor. To familiarize with the tasks and memorize
the haptic stimuli, up to ten test trials (not used for exercise performance estimation as elaborated below)
with visual feedback of the presented aperture were provided in each session. These passive exercises are
thought to be feasible even by severely impaired patients without requiring assistance from supervising
physiotherapists.

E3 & E4 - Haptic perception

Patients are asked to actively grasp the end-effector of therobot to identify different viscoelastic force
fields representing virtual sponges rendered by the robot and displayed on the monitor (E3). In E4 a
similar concept is trained, where the end-effector of the robot is rotated by 90◦ so that patients identify
different virtual springs by vertically pressing down on the springs with their index finger. Similarly to
E1 andE2, test trials are also provided in each session, where visualfeedback on the presented stimulus
is provided on the monitor.

E5 & E6 - Sensorimotor memory

In a first phase of this exercise, the patient’s hand is passively moved from a starting position to a
target grip aperture (E5) or to a target pronosupination angle (E6), and held there for 2 seconds before
returning to the start position. Details on the target selection process can be found in Figure 2. In the
second phase, patients are asked to actively reproduce the movement by displacing the finger supports
to the same target position/angle, and hold this position/angle for 2 seconds within a specific position
error window.

E7 - Sensorimotor coordination

Patients are asked to actively pronate/supinate their forearm to reach a target angle indicated haptically
by a small valley/gap along the translational DOF (see [28] for additional details). This exercise requires



patients to combine and coordinate sensory feedback from the fingers while actively performing position
exploration with the forearm.

In the elaboration of the therapy plan, it was decided to perform more sessions with exercisesE3

andE7, setting a focus on compliance identification during grasping as well as the coupled training
of forearm rotation and grasping, which were identified as the exercises corresponding best to daily
activities. To maximize participation in the exercises, physiotherapists could assist patients’ movements
or prevent their hand from slipping off the finger supports ifpatients could not execute the movements
on their own, but were requested not to assist patients in thecognitive tasks related to each exercise.

Initial selection and automatic adaptation of difficulty levels

Both an initial and an automatic difficulty adaptation were used to individualize and adapt the robotic
therapy in an attempt to optimally challenge patients throughout the entire therapy, targeting an exercise
performance ofP = 70% starting from the very first therapy session (Figure 3).

Figure 3 Patient-tailored and adaptive therapy concept. The difficulty levels of the neurocognitive
robot-assisted exercises (detailed in Figure 2) are customized before the therapy onset using the assessed
rotational range of motion (ROMϕ), the just perceptible difference threshold in grasping aperture (DL)
and the stiffness Weber fraction (Wf ). An automatic difficulty adaptation routine adjusts the exercise
difficulty level on a session-by-session basis according tothe performance during the last session of the
respective exercise (performance computed over the entireexercise session).

Before the robotic therapy sessions were started, exerciseparameters, such as movement amplitude or
magnitude difference between haptic stimuli (see Figures 2and 3), were selected to adapt the exercise
parameters of the initial difficulty levelLi = 1 (i ∈ {1, 7}) to initial functional ability of each individual
patient according according to the outcomes of roboticpre assessments (ROMϕ, DL andWf ). Based
on this initial difficulty level, more advanced difficulty levels were computed by incrementally changing
exercise parameters with respect to those of the initial level (Figure 3). Heuristic parameter increments
were scaled with the outcomes of the individualpre assessments (ROMϕ, DL, Wf ). Therefore, all
difficulty levels were “tailored” with respect to the initial ability of the patient, as explained in detail
in Figure 2. As an example of how to interpret Figure 2, a patient assessed with a distanceDL of
4.25 mm duringA2 will start exerciseE1 with an initial difficulty level (L1=1) with N = 3 different
grasping apertures to discriminate, i.e. 71.5 mm, 80 mm and 88.5 mm. These grasping apertures
differ by δd = 2 · distanceDL = 8.5 mm, and are centered arounddi-22 = 80 mm, wheredi =
102 mm corresponds to a comfortable aperture for the patient’s hand on the finger supports (depending
on hand size). In the second difficulty level (L1=2), 4 grasping apertures are presented, differing by
δd = 1.6 · distanceDL = 6.8 mm, and again centered around di−22 = 80 mm, i.e., 69.8, 76.6, 83.4 and
90.2 mm.

The progression from one level of difficulty to the next was ruled by an automatic difficulty adaptation
routine, which updates the difficulty level from session to session based on the patient’s performance in
the last therapy sessionPi of an exerciseEi:

Li =







Li + 1 , if Pi ≥ 70%
Li , if Pi ∈ ]20, 70[ %
Li − 1 , if Pi ≤ 20%

wherei ∈ {1, 7}. Performance in an exercise was evaluated by the percentageof successfully completed
trials, i.e. correctly identified stimuli or properly reproduced apertures/orientations. The selection of dif-



ficulty adaptation thresholds was motivated by the work of other groups [6,20,21], and by observations
form our previous work [25].

Results

All six subacute stroke patients were able to participate inthe study, completing all of the robotic as-
sessments and therapy sessions. In the first robotic assessment, patients exhibited different performance
levels, as shown in Figure 4, suggesting different initial impairment levels. Overall, patients typically
showed reduced rotational range of motion compared to healthy behavior (on average -2.9%, [38]),
larger smallest perceptible distance difference threshold DL (on average +260%, [35]), and larger stiff-
ness Weber fractionsWf (on average +364%, [37]).

Figure 4 Results of the robotic assessments A1-A3 during thepre assessment (week 0). Top:
pronosupination (left) and grasping aperture (right) range of motion.Bottom:Patient-wise evolution of
the presented stimulus differences∆d and∆k% to assess proprioception during hand opening/closing
and haptic perception during grasping. Presented stimuluslevels are adaptively selected by the PEST
algorithm and converge to the smallest perceptible difference. Four assessment runs did not converge
within the predefined time constraint of 20 minutes and are indicated with a cross (x) for the last trial.
Healthy performance is indicated with dashed lines for comparison (forearm pronation 70◦, forearm
supination -85◦ [38], distanceDL = 1 mm [35], stiffnessWf = 7% [37]), except for translational
ROM, which depends on the hand size.

The outcome of the first robotic assessment was used to define the initial difficulty level of the seven
exercises in order to offer challenging tasks from the onsetof therapy. Averaged over all patients and
exercises, the initial performance level, measured as the percentage of successfully achieved trials in
the first occurrence of each exercise, was 62%±20% (mean±std). The difficulty progression algorithm
developed in this work was able to maintain the average performance of a session (at the group level)
around the desired 70% (64% on average over all sessions, minimum 57% and maximum 71%, Fig-
ure 5), while patients progressed through difficulty levelsfor each exercise. Despite this good average
performance, it should be noted that the variability was quite high (on average±21%), indicating that
some of the exercises were not as well adapted to the patientsas others. Figure 5 further illustrates
this and shows the performance and difficulty level progression of each exercise for one representative
patient (P4).

Figure 5 Therapy exercise performance.Top: Average therapy session performance (mean and stan-
dard deviation over all patients) tracks the desired 70% level (left y-axis). During therapy progression,
difficulty levels (averaged over all patients) continuously increase (right y-axis, blue circles).Bottom:
Exercise-wise performance evolution and corresponding difficulty level adjustments for a representative
patient (P4). Note that only a subset of 3 exercises was performed during each therapy session.

Both robotic and clinical assessments showed improvementsover the course of the study (Figure 6). On
average, patients showed an improvement on theROMϕ (pre to post: +29.7◦, pre to follow-up: +9.6◦),
maintained their baseline assessment performance on theROMx (pre to post: -1.7 mm,pre to follow-
up: 0 mm), improved their compliance perception (pre to post: -13.5%,pre to follow-up: -11.3%) while
proprioception initially worsened slightly but eventually improved (pre to post: +0.17 mm,pre to follow-
up: -0.8 mm). A mean improvement in the total FMA-UE score of 5.3points (pre to post) and 3.0 points
(pre to follow-up) was observed, with an improvement of the hand/wrist subscore of the FMA-UE of 3.5
points (pre to post) and 3.8 points (pre to follow-up). Note that the larger improvement in the hand/wrist
subscore than in the overall FMA score atfollow-up is mainly explained by one patient who showed
a decrease of 10 points in FMA atfollow-up. A correlation (rs = 0.85, p= 0.04, Spearman’s rank



correlation) was found between the change in FMA-UE subscore for the hand/wrist and the number of
difficulty levels that were progressed over all exercises (Σ(Li,final), i ∈ {1, 7}). Similarly, a correlation
was observed betweenΣ(Li,final) and the total FMA-UE score (rs = 0.70, p= 0.15, Spearman’s rank
correlation) (Figure 7).

Figure 6 Improvement in clinical and robotic assessment scores. mean and 95% confidence interval
of the change in the clinical (total FMA-UE score and FMA hand/wrist subscore) and robotic assessment
scores (rotational and translational range of motion, proprioception (A2) and haptic perception (A3))
from pre to postassessment (left panel) and from thepre to follow-upassessment (right panel). Positive
changes (negative changes in the case of A2 and A3) indicate an improvement on the assessment scale,
i.e. an impairment reduction.

Figure 7 Difficulty level increase correlates with clinicalscores. The difficulty level improvement
summed over all 7 exercises correlates with the changes in the FMA-UE (total score and hand/wrist
subscore) from thepre to thepostassessment.rs is the Spearman’s rank correlation coefficient. The
line through the data points was fitted by linear regression.

Discussion

In this paper we presented a novel assessment-driven methodto select and adapt difficulty levels in
robot-assisted therapy. The proposed approach combines initial robotic assessments to select patient-
specific therapy levels adapted to the individual’s deficits, with a simple automatic adaptation routine
allowing patients to progress through these levels based ontheir performance, as objectively measured
by the robot. A proof of concept was implemented in the context of a 4-week pilot study focusing on
rehabilitation of hand function with 6 subacute stroke patients.

The need for patient-specific difficulty levels

Stroke survivors can be highly heterogeneous in terms of sensorimotor and cognitive impairments, as
well as in their prognosis for recovery [39]. In the present study, despite presenting similar initial FMA-
UE scores (56.0±3.7) at baseline, stroke patients showed substantial differences in proprioception and
haptic perception as revealed by the robotic assessments using the ReHapticKnob. First, this underlines
that the FMA-UE scale, often used to evaluate upper limb motor impairment, does not capture hand sen-
sorimotor deficits well [40]. Secondly, the robotic assessments focusing on sensory perception highlight
that, despite exhibiting rather mild motor deficits, most ofthe participants still suffered from sensory
impairments. Sensory impairment is often not a focus in rehabilitation [41], despite growing evidence of
its importance for motor learning and recovery [42]. In thissense, the proposed neurocognitive approach
to robot-assisted hand rehabilitation, with its primary goal of perceiving and interpreting sensory infor-
mation from the impaired limb, proposes a novel way to assessand rehabilitate hand function. It is also
interesting to note that the psychophysics methods used in the robotic assessments to evaluate sensory
thresholds converged in most of the cases, leading to assessment sessions of short duration (typically
below 15 minutes per assessment), underlining the feasibility of such an approach in clinical routine. An
initial assessment provides objective values that serve asbaseline and allow to track functional changes
from the very beginning of the therapy. However, a validation of the proposed robotic assessments in a
larger population is necessary to test their validity and reliability.

Altogether, results of the robotic assessments illustratethat, in order to confront patients with an appro-
priate level of challenge from the beginning of the first therapy session, individualized levels of difficulty
for each neurocognitive exercise are needed. It was shown byother groups that, in the absence of such
an initial assessment-based difficulty selection, a large number of therapy trials or sessions may be



needed to reach challenging difficulty levels, even with fast adapting difficulty modulation algorithms.
In their study with the ADAPT system, an end-effector presenting different real-life objects to manipu-
late against various resistance levels, Choi and colleagues showed that on average 30 trials were needed
for chronic stroke patients to reach a challenging difficulty level [6]. In a robot-assisted framework
where therapy exercises are composed of a large number of repetitions (i.e. over 100), this time for
adaptation is likely not an issue. However, such a delay to reach challenging exercise parameters is not
suitable in the context of neurocognitive exercises, wherethe therapy goal is to focus on movement qual-
ity, and the cognitive processing of perceived sensory information results in a lower number of therapy
trials per session, which can be as low as 20 trials per exercise and session [28].

Control of patients’ performance level

The primary objective of this work was to present stroke patients with rehabilitation exercises that are
neither too simple nor too difficult, as this is expected to maximize active participation and motivation for
training while minimizing frustration, three aspects thatare commonly recognized as being critical for
the success of a rehabilitation intervention [5,43]. In theliterature, various types of algorithms have been
tested for online decision making to modify task parametersof a robot-assisted rehabilitation exercise
and modulate its difficulty. As each algorithm has its own specific advantages related the platform
on which it is implemented and on the type of data available toevaluate patient performance, there
is no obvious golden standard for online difficulty adaptation. Several groups developed sophisticated
methods, such as partially observable Markov decision processes [23], or state-space models of recovery
where the evolution of a combination of kinematic parameters is tracked to adapt exercise difficulty when
parameters reach plateau performance [11,19]. Other groups used update functions with a variable
forgetting factor, computed based on performance in previous trials [6], or based on the evolution of
kinematic or physiological parameters [13]. Simpler approaches consist in comparing the performance
achieved in a block of trials to a target performance defined by the therapist prior to the session and
adapted to the patient’s impairment level, or determined based on the patient’s prior performance in the
specific exercise [20,22]. The rate at which the adaptation of difficulty is achieved also varies widely in
the literature, with algorithms adapting difficulty on a trial per trial basis [6,13], per blocks of a few trials
[21,22], or at the beginning of a session based on the performance of the previous session [11,19,23].

While all of the proposed methods for therapy adaptation reported good ability to modulate difficulty, we
chose to implement a therapy adaptation approach based on patient-specific levels of difficulty, in which
progression from level to level is based solely on the percentage of successful trials achieved during the
previous session, i.e. performance in each exercise. This criterion is easy to understand by patients and
therapists as opposed to algorithms based on abstract parameter optimization, and could contribute to
maximizing engagement and motivation. Also, this type of algorithm was shown to be well-accepted
and to provide good results in clinical application [21,44]. In our algorithm, a target performance value
of 70% was selected. This choice was motivated based on our results from prior studies with stroke
patients [24,25], as well as by values reported in literature [45].

Thanks to the initial difficulty adjustment, patients directly started with an average success rate close
to the targeted 70% (62% averaged over all exercises). This underlines that from the first few trials,
patients were properly challenged during the therapy session, and could appropriately engage in the
task. Over the course of the 15 therapy sessions, the proposed difficulty adaptation algorithm maintained
patients’ average performance close to the targeted 70% (within the range of [57,71]%) by automatically
increasing levels of difficulty according to measured performance. As our approach personalizes the
rate of difficulty increase in the levels of each exercise based on the initial results of robotic assessments
(ROMϕ, DL andWf ), we ensure that the ability of patients to improve in levelsof difficulty is not
influenced by the initial level of impairment.



The achieved degree of control over session performance throughout the course of the therapy is in line
with the results of Choi and colleagues, who observed, on average, a variation of 33% in success rate
around the challenge point identified by their algorithm [6].

Reduction in hand and arm impairment

Over all exercises, patients improved between 7 and 27 difficulty levels during the course of the 4 weeks
of therapy. This progression could be attributed partly to familiarization with the robot and exercises, and
to a reduction in upper limb impairment. While these two factors are difficult to decouple, we observed
that the number of levels progressed by patients was correlated with improvements on the FMA-UE,
and especially the FMA-UE subscore for the hand/wrist (Figure 7). These correlations suggest that an
increased performance in the exercises (increase in difficulty levels) does not simply correspond to a
learning of exercise mechanisms (e.g. elaborating a strategy to better achieve the task), but that the
proposed therapy led to a decrease in impairment. Impairment was found to be reduced especially at the
level of the hand and wrist, where the interaction with the robot takes place, but also at the level of the
proximal part of the arm, in line with results of previous work [25,46].

Comparison of robotic measures between thepre andpostassessments further supports these conclu-
sions, with patients performing better (i.e. showing smaller minimal detectable differences) after the end
of therapy, suggesting improved hand sensory function. This is an important result, as the implemented
neurocognitive exercises specifically focused on trainingsensory perception. Difficulty increments be-
tween levels were designed to present sensory stimuli closeto the patient’s sensory thresholds measured
during the initial assessments.

The correlations between clinical scores and progression in difficulty levels suggest that the latter could
be seen as an indirect way to monitor recovery on a daily basis, without the need to perform additional
time-consuming clinical or robotic assessments.

Limitations of this pilot study

Despite promising results for the control of overall performance at the group level, a relatively large
performance variability could be observed. This was due to some of the neurocognitive exercises being
over- or under-challenging for patients, and thus requiresimprovement for future studies. For example,
the initial parameters of exerciseE2 were pre-defined and not adjusted to the ability of the patient as
measured in the roboticpreassessment. This resulted, at least initially, in exercises that were too simple
for some participants, as shown for the representative subject P4 (Figure 5). In return, exercisesE5

andE6 (sensorimotor memory) were found to be overly difficult (i.e. average performance below 47%)
for most patients, due to the small error band allowed for thereproduction of movements, which made
the task too demanding. Nevertheless, the initial adaptation of the exercise parameters resulted in an
average performance close to the desired 70% level.

Another limitation of the present study lies in the relatively low number and limited range of initial motor
impairment of patients that could be recruited for this pilot study (between 52 and 61 on the FMA-UE
scale). It should nevertheless be noted that the proposed neurocognitive exercises were also designed to
allow patients with more severe motor impairment to actively engage in robot-assisted therapy, as shown
in our previous work [28].



Conclusions

The results of this pilot study suggest that robotic assessments of hand sensorimotor function can be used
to tailor robot-assisted therapy parameters to the abilityof each individual patient. This allows to opti-
mally balance exercise difficulty from therapy onset. Further, automatic and progressive modulation of
therapy difficulty assures that patients perform at a success level that should keep the therapy engaging,
rewarding and motivating. While the proposed concept of patient-tailored and adaptive robot-assisted
rehabilitation was evaluated in the context of a pilot studyon neurocognitive robot-assisted rehabilitation
of hand function, it is generalizable to other robotic platforms and limb segments using robotic assess-
ments and adaptation parameters specific to the capabilities of the platform. This approach further has
the potential to impact the design and implementation of future therapeutic protocols for unsupervised
therapy, both in the clinic and the home environment.
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Figure 1



E1: Proprioception
(Passive grip aperture identification)

The robot closes the hand from an initial grasping 
aperture di (adjustable in the range [102, 122] mm 
based on hand size) to one out of N target 
apertures. The N target apertures differ by d and 
are centered around di-22 mm.

Exercise description Initial adaptation Exercise parameters
Performance
metric

Visual feedback

The difference between 
target apertures is a function 
of the assessed distance DL: 

d = f(distance DL)

The assessed distance DL 
(assessment A2) is limited to 
the range [2,10] mm 

5 difficulty levels:

Number of target apertures
N = {3,4,5,5,5} 

Target aperture difference

d = {2,1.6,1.2,1.1,1}  (distance 
DL)

Percentage 
of correct 
identification 
trials

E2: Proprioception
(Passive pronosupination angle identification)

The robot rotates the hand from an initial angle 

angles. The N target angles differ by  and are 

none 5 difficulty levels:

Number of target apertures
N = {3,4,5,6,7} 

Target aperture difference

Percentage 
of correct 
identification 
trials

E3: Haptic perception
(Stiffness identification during grasping)

The robot renders N sponges (spring-damper 
combinations) which have to be identified based 
on their viscoelastic resistance during squeezing. 
Rendered stiffness and damping pairs vary by  
percent from one to another and are centered 
around Kmedium = 550 N/m and 
Bmedium = 35 N/(m/s).

The relative difference 
between the visco-
elasticities is a function of 
the assessed stiffness Wf:  
= f(stiffness Wf)

The assessed stiffness Wf 
(assessment A3) is limited to 
the range [7.5, 45] %

10 difficulty levels:

Number of sponges
N = {3,3,4,4,5,5,5,5,5,5} 

Relative difference between 
viscoelasticities

 = {2,1.9,1.8,1.7,1.6,1.5, 
1.4,1.3,1.2,1.1}  (stiffness Wf)

Percentage 
of correct 
identification 
trials

E4: Haptic perception
(Stiffness identification during pinching)

The robot renders N springs (spring-damper 
combinations) which have to be identified based 
on their viscoelastic resistance during vertical 
index finger pinching. Rendered stiffness and 
damping pairs vary by  percent from one to 
another and are centered around Kmedium = 300 N/
m and Bmedium = 20 N/(m/s).

The relative difference 
between the visco-
elasticities is a function of 
the assessed stiffness Wf:  
= f(stiffness Wf)

The assessed stiffness Wf 
(assessment A3) is limited to 
the range [7.5, 45] %

5 difficulty levels:

Number of springs
N = {3,4,5,5,5} 

Relative difference between 
viscoelasticities

 = {2,1.8,1.6,1.4,1.2}  (stiffness 
Wf)

Percentage 
of correct 
identification 
trials

E5: Sensorimotor memory (Grip aperture)

Teach: the robot closes the hand from an initial 
grasping aperture di (adjustable in the range [102, 
122] mm based on the hand size) to a randomly 
selected target grasping aperture dt in the range 
[70, di-2] mm. After 2 seconds the hand is moved 
back to di. 
Reproduce: the patient is asked to move to the 

position for 2 seconds (position logging). A trial is 
correct if the logged position lies within the error 
band [dt- e/2, dt+ e/2]. A damped force field helps 
to smoothen the movement of the patient: B=   
50 N/(m/s). 

The error band is a function 
of the assessed distance 
DL: e = f(distance DL)

The assessed distance DL 
(assessment A2) is limited to 
the range [2,10] mm

5 difficulty levels:

Error band

e = {1.2,1.1,1,0.9,0.8}  
(distance DL)

Reduction of damping support: 
={1,0.75,0.5, 0.25,0}

Percentage 
of correct 
reproduced 
trials

N sticks indicate the N grasping 
apertures. Identification feedback: a green 
check mark (correct ans.) or a red cross 
(wrong ans.) is displayed next to the 
correct (target) stick.

N triangles indicate the N target angles. 
Identification feedback: a green edge 
(correct ans.) or a red edge (wrong ans.) 
is displayed around the correct (target) 
angle.

All N sponges are displayed and animated 
during squeezing. Identification feedback: 
the rendered sponge is colored green 
(correct ans.) or red (wrong ans.).

All N springs are displayed and animated 
when compressed. Identification 
feedback: the rendered spring is colored 
green (correct ans.) or red (wrong ans.).

No visual feedback is provided during 

After trial completion a green check mark 
is shown if the trial was correct. 
Additionally, the target position is shown 
in grey and the registered position in 
yellow (or in red if the trial was wrong).

Exercise parameters:
Par = {val1,val2,val3,val4,val5}

level 1     level 2     level 3     level 4     level 5

E7: Sensorimotor coordination
(Haptically cued forearm rotation)

The patient is asked to explore the rotational DOF 
in order to find a target angle t which is indicated 
haptically by means of a small haptic valley/gap 
with amplitude A along the translational DOF. The 
robot has to be held in [ t t

to register and verify the correctness of the current 
robot angle . A rotational damping field with 

movement. A trial is successful when the target 
angle is found within 60 seconds. Otherwise the 
robot moves the patient passively to t.

Number of 
successful 
trials within 
exercise 
time. 
20 trials (or 
more) in 15 
min 
corresponds 
to 100%.

Assessed rotational ROM  
(assessment A1) defines the 
range R from which the 
target angle is randomly 
selected: R=f(ROM )

The range R is limited to 

10 difficulty levels:

Applicable range of target angles:
R = {1,1.02,1.04,1.06,1.08, 
1.1,1.12,1.14,1.16,1.18}  ROM

Reduction of damping support: 
B={0.9,0.8,0.7,0.6, 
0.5,0.4,0.3,0.2,0.1,0} e-3 

Haptic valley amplitude:
A={1.8,1.65,1.5,1.35,1.2,1.05,0.9,
0.75,0.6,0.45} [mm]

E6: Sensorimotor memory 
(Pronosupination angle)

Teach: the robot rotates the forearm from an initial 

angle t randomly selected from a range R. After 2 
seconds the hand is returned to i. 
Reproduce: the patient is asked to rotate to the 

seconds (angle logging). A trials is correct if the 
logged angle lies within the error band: [ t- e/2, t 

+ e/2]. A damped force field helps to smoothen the 
movement of the patient: B=  

Assessed rotational ROM  
(assessment A1) defines the 
range R from which the 
target angle is randomly 
selected: R=f(ROM )

The range R is limited to 

5 difficulty levels:

Range from which t  is randomly 
selected
R = {1,1.05,1.1,1.15,1.2}  ROM

Reduction of damping support: 
={1,0.75,0.5, 0.25,0}

Error band

e

Percentage 
of correct 
reproduced 
trials

No visual feedback is provided during 

After trial completion a green check mark 
indicates if the trial was correct. 
Additionally, the target angle is shown in 
grey and the logged angle in yellow (or in 
red if the trial was wrong).

A rotating picture reflects the current robot 
angle . A green frame is drawn around 
the picture when the target angle has 
been found successfully. Only during task 
familiarization the target angle t  is 
visualized by a black square.Figure 2
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