

ABX Ninja
GUI Implementation Plan

Authors

Katie Hochberg
Allie Sanzi

Mentors

Dr. Jennifer Townsend
Michael Cohen
Andrew Hinton

Vision Statement

Our goal is to create a web application that can be used by clinicians, medical residents, and
medical students in order to provide antibiotic recommendations for patients affected by
common infections. Centers for Disease Control and Prevention estimates that up to 50% of all
the antibiotics prescribed for people are not needed or are not optimally effective as prescribed.
This overuse of antibiotics is a dangerous issue facing healthcare in the United States and other
countries around the world. To improve the accuracy of antibiotic prescription, Antibiotic Ninja
will assist healthcare providers by making an appropriate antibiotic recommendation for patients
based on their history, vital signs, and lab results.

Introduction
The assessments and recommendations made by ABX Ninja are generated from decision trees
developed by our mentor, Dr. Jenny Townsend. The recommendations at each point are
derived from Johns Hopkins antibiotics guidelines and Infectious Diseases Society of America
(IDSA) guidelines. Each infection supported by ABX Ninja will have its own decision tree. The
decision tree shown below is for Urinary Tract Infections. Each decision tree has nodes with a
question that asks about the patient’s status, which will be answered by the healthcare provider
until they arrive at a recommendation.

Motivation
Currently, in order to input these decision trees, developers have to manually translate the
decisions trees into the database using the following four tables:

1. Tree​ - currently has only three entries which correspond to the three infections we
support (Soft Skin and Tissue, Urinary Tract, and Respiratory).

2. Node​ - contains the information for each decision point in the tree. Each node has a
threshold score that must be met to take the “yes” path. If that threshold is not met, then
the “no” path will be taken. The threshold score is calculated using a formula encoded in
each node that uses the information entered by the healthcare provider.

3. Factors​ - holds the information for each of the inputs entered by the provider. These
factors have a corresponding type to determine which input screen they are displayed on
(clinical history, symptoms, vital signs and labs, or image findings), and an input type
(multiple choice or text box).

4. Result Node​ - holds the assessments and recommendations for each outcome of each
infection. These result nodes are stored separately from regular nodes because they
can be modified for each institution. Storing these separately reduces the amount of
space required by the database to store decision tree information.

Here is an example tree and the corresponding tables:

Table 1: ​Nodes
id tree name display score threshold yes no

0 1 node0 Node 0 (factors.factor1 > 12 ? 1 : 0) + (factors.factor2 ? 2 : 0) +
(factors.factor3 < 5 ? 1 : 0)

2 1 2

1 1 node1 Node 1 (factors.factor4 ? 1 : 0) + (factors.factor5 ? 1 : 0) 1 3 4

2 1 node2 Node 2 (factors.factor6 ? 4 : 0) + (factors.factor7 < 4.5 ? 1 : 0) +
(factors.factor8 > 30 ? 2 : 0) + (factors.factor9 <= 100 ? 2 : 0)

5 5 6

3 1 node3 Node 3 (factors.factor10 ? 1 : 0) 1 7 8

Table 2: ​Results

id tree recommendation assessment institution

4 1 Recommendation 1 Assessment 1 1

5 1 Recommendation 2 Assessment 2 1

6 1 Recommendation 3 Assessment 3 1

7 1 Recommendation 4 Assessment 4 1

8 1 Recommendation 5 Assessment 5 1

Table 3: ​Factors

tree node name type display

1 node0 factor1 lab Factor 1

1 node0 factor2 clinical Factor 2

1 node0 factor3 lab Factor 3

1 node1 factor4 clinical Factor 4

1 node1 factor5 clinical Factor 5

1 node2 factor6 clinical Factor 6

1 node2 factor7 lab Factor 7

1 node2 factor8 lab Factor 8

1 node2 factor9 lab Factor 9

1 node3 factor10 clinical Factor 10

Decision Tree GUI Description
The goal of this interface is that administrators will be able to edit and create decision trees
without developers performing manual conversion.

The GUI will look very similar to the decision trees shown above, however, only the name will be
visible in the node. The rest of the information will be viewable by clicking on the node. This
will simplify GUI so that it is intuitive to use.

In terms of functionality, administrators will be able to drag and drop new nodes into the tree
and update the factors and results associated with those nodes. Nodes can be connected by
dragging an arrow from one node to another and providing the relationship (yes/no). To update
node information, the node must be selected by the administrator. For a non-result node, an
administrator can update the name, the yes/no paths, the threshold score, and the associated
factors. Factors will have a display name, an input type (yes/no choice or number), and an
expression to determine what value of the factor will contribute to a node’s overall score. For a
result node, an administrator can update the assessment, directive, and recommended
antibiotics. Antibiotics will have a drug name, dose, frequency, and duration. Nodes and result
nodes will be indicated by different shapes or colors for clarity.

Initial Research
Through our initial research, we found that there are not many publicly available libraries that
could be directly used to implement this feature. To implement this GUI from scratch, we found
a few options that provide some insight:

GoJS:
http://gojs.net/latest/samples/index.html
This library has many different graphical representations. It uses a JSON object to store the
different nodes and objects in the graph, which would be helpful to view how the objects are
encoded and displayed. However, this library seems to have graphs that are populated from
the backend and not editable from the frontend.

AngularJS Flowchart:
https://www.codeproject.com/Articles/709340/Implementing-a-Flowchart-with-SVG-and-Angular
JS
This project has an implementation for a flowchart using AngularJS. It allows multiple inputs
and outputs from each node, which is helpful for us to understand since our nodes will have
multiple outputs. It also uses JSON objects to store different nodes and objects in the flowchart.
However, our project uses Angular 2, which is not compatible with AngularJS, and this
implementation does not allow users to create new nodes from the frontend.

Angular UI Tree:
https://angular-ui-tree.github.io/angular-ui-tree/#/basic-example
This is an actual tree implementation. Users can add items from the frontend, unlike the
previous two implementations, which is beneficial. It stores the items in the tree as JSON
objects, and the structure of these items are closely related to how the nodes from the decision
tree will have to be stored. However, the GUI structure is not intuitive our application.

jsPlumb:
https://jsplumbtoolkit.com/docs/toolkit/demo-flowchart-builder.html
See below for a jsPlumb API interface. Users are able to select the type of node to create. In
our case, the types of nodes are regular nodes and result nodes. In addition, the user can draw
various paths from node to node that are labeled yes or no. Overall, this interface looks very
similar to the decision trees for this project. jsPlumb has a community implementation which
allows for limited use of their API, however, this would likely require significant work. To access
the full version, which would be much easier to integrate with our current implementation, the
ABX Ninja team would need to purchase a license.

https://www.codeproject.com/Articles/709340/Implementing-a-Flowchart-with-SVG-and-AngularJS
https://www.codeproject.com/Articles/709340/Implementing-a-Flowchart-with-SVG-and-AngularJS
https://angular-ui-tree.github.io/angular-ui-tree/#/basic-example
http://gojs.net/latest/samples/index.html
https://jsplumbtoolkit.com/docs/toolkit/demo-flowchart-builder.html

Ideal Implementation
It would be ideal to purchase a license for the jsPlumb API. ABX Ninja developers could extend
the API to have a sidebar pop up when a given node is clicked. This sidebar would display the
factor and result information associated with the current node and allow users to edit the nodes
separately from the tree. This would result in an uncluttered and intuitive GUI. Once the factor
and result information is updated on the frontend, the developers could encode the data to fit
the database schema and push the changes to the database.

Implementation Plan B
If the ABX Ninja team is unable to purchase a license for the jsPlumb API, the best option is to
build out the GUI from scratch using the other libraries and projects listed above for inspiration.
Nodes in the tree should be stored as JSON objects, and the GUI should use that JSON
information to populate the tree correctly. Nodes should be styled and permissioned based on
their type (node or result) such that users are able to differentiate between them and result
nodes have no outgoing paths. Upon clicking a node, a sidebar should appear that contains all
of the relevant factor and result information. This should be editable and will need to be pushed
to the database when changes are made. This information could also be held in a JSON object
that would then be used to create the rows in the database according to the current schema. All
nodes should be editable and deletable from the graph. The following lists contains important
things to remember when executing this implementation.

Important things to remember
● The start node in the tree must have an ID of 0 and must be continuous because the

backend stores the nodes in an array and uses the node’s ID as its index into the array.
● Factors can be used in score formulas for multiple nodes, however each node’s factors

will be determined separately, so checks will need to be done to ensure that factors are
not displayed twice to user

● When deleting a node, it is important to update all nodes that it is connected to and
remove all of its corresponding information. However, be aware that factors can be used
for multiple nodes, so a factor should only be deleted if it is not used by any of the other
nodes.

