Group 21: Robotic Soft Tissue Assessment

Team Members: Syed Hossain, Bugrahan Cigdemoglu Mentors: Paul Wilkening, Yunus Sevimli, Dr. Russ Taylor, Dr. Matt Stewart, Dr. Lee Akst, Dr. Chris Razavi

Table of Contents

Goal	2
Statement of Relevance/Importance	2
List of Deliverables	3
Minimum	3
Expected	3
Maximum	3
Technical Summary of Approach	4
Key Dates & Assigned Responsibilities	5
List of Dependencies & Plan for Resolving	6
Management Plan	6
Reading List	7

Goal

The goal of this project to design and conduct a study that quantifiably assess robotically-assisted soft tissue manipulation. We will be doing a specific case of otolaryngology in which the patient has a vocal cyst treated with surgery. The further aim of this project is to develop an algorithm to create virtual fixtures in 3D to improve robotically-assisted surgical accuracy.

Statement of Relevance/Importance

The current surgical treatment techniques of vocal cords do not involve robotic assistance. This results in unintended damage to benign tissue during the surgery caused by hand tremor, or incomplete removal of the cyst due to limited movement ability whilst phonosurgery. Robotic assistance can minimize hand tremor as well as provide virtual fixtures to maximize movement ability within safe boundaries. Designing a method to quantifiably assess robotically-assisted soft tissue manipulation can help increase the use of robots during surgeries. Additionally, the analysis can be used to improve accuracy of robotically-assisted surgery techniques for various robot algorithms.

List of Deliverables

Minimum

- I. Study design for surgery, data collection and analysis
- II. CAD design of a phantom to conduct surgical experiments on
- III. Collected data and results of surgical experiments on 3D printed phantom conducted by experts & med students with and without robotic assistance
- IV. Computer vision based analysis algorithm using Matlab/Python to quantify success of vocal cyst removal surgery

Expected

- I. Study design for conducting surgery on an non-living animal vocal cord
- II. Collected data and results of surgical experiments on animal vocal cord conducted by experts & med students with and without robotic assistance
- III. Improved computer vision based analysis algorithm to quantify success of vocal cyst removal surgery

Maximum

- I. 3D virtual fixture algorithm developed for the robot using C++
- II. Study design for conducting robotically-assisted surgery with virtual fixtures
- III. Collected data and results of robotically-assisted surgical experiments with virtual fixtures on the phantom conducted by experts
- IV. Comparison of quantified success results of non-assisted, robotically-assisted with no virtual fixtures, and robotically-assisted with virtual fixtures surgeries on the phantom

Technical Summary of Approach

For the minimum deliverables, we will be modifying readily available human CAD models to extract the relevant regions for the surgery of vocal cyst. We will create the cyst using a colored silicon liquid and a syringe, injecting the liquid into the white healthy human phantom. As the surgery is conducted in a Mock OR setting by the experts, med students with and without robotic assistance, we will be collecting the extracted phantom cysts. Images of extracted regions from different angles will be recorded. Developed Python algorithm will compute the red region volume (the cyst) and the white region volume (benign tissue.) of the extracted region from the recorded images.

For the expected deliverables, we will inject a colored silicon into animal vocal cord area. Repeat the experimental procedure, and record images of extracted regions. Using an upgraded algorithm we will compute the volume of cyst and benign tissue.

For the maximum deliverable, we will design an advanced virtual fixture algorithm that creates a 3D boundary for the surgeon preventing damage to the benign regions. This will be accomplished by improving upon the pre-packaged 2D virtual fixture algorithm to develop a 3D virtual fixture by locating the boundaries of the cyst using a pointer to show the boundaries before surgery. The same analysis procedure as the phantom will be used for quantitative analysis of success.

Key Dates & Assigned Responsibilities

	Feb W4	Mar W1	Mar W2	Mar W3	Mar W4	Mar W5	Apr W1	Apr W2	Apr W3	Apr W4	May W1	May W2
Minimum												
Plan Presentation												
Design phantom experiment procedure												
Design phantom CAD												
Manufacture phantoms												
Conduct surgery with experts												
Conduct surgery with med students												
Develop quantitative analysis algorithm												
Analyze experiment results												
Expected												
Project Checkpoint Presentation												
Design animal experiment procedure												
Conduct surgery with experts												
Improve quantative analysis algorithm												
Analyze experiment results												
Maximum												
Design VF experiment procedure												
Develop VF algorithm												
Conduct surgery with experts												
Compare results with past experiments												
Prepare Poster												
Project Final Presentation												

List of Dependencies & Plan for Resolving

Dependency	Resolution
Computer Vision library decision and tutorial	Meet with Paul Wilkening
3D CAD software decision and tutorial	Meet with Yunuscan Sevimli
Mock OR access	Access granted
3D printer access for phantom manufacturing	Access granted
Get experts to conduct experiment Mar W4	Confirmation received
Get experts to conduct experiment Apr W2	Meet with Yunuscan Sevimli
Get experts to conduct experiment May W1	Meet with Yunuscan Sevimli
Get med students to conduct experiment Mar W4	Confirmation received
Get permission to experiment with animals	Meet with Yunuscan Sevimli
ROS background for virtual fixture algorithm	Meet with Paul Wilkening

Management Plan

Syed Hossain is a BME with CAD design, wet lab and Mock OR experience. He will be mainly responsible for designing study & procedure, building the phantom from CAD models, assisting the surgery, making sure the procedure is correctly followed by the experts & med students, and collecting data.

Bugrahan Cigdemoglu is a BME & CS double major with experience in computer vision, Python, Python data science libraries, ROS, and C++ for virtual fixture development.

We will be in constant contact with our mentors. Bugrahan will consult Paul Wilkening for programming related questions, and Syed will consult Yunuscan Sevimli for surgery and phantom related concerns.

Reading List

Jensen JB, Rasmussen N. Phonosurgery of vocal fold polyps, cysts and nodules is beneficial. *Dan Med J*. 2013 Feb. 60(2):A4577. [Medline].

Stanković P, Vasić M, Djukić V, Janosević Lj, Vukasinović M. Vocal fold masses removal--the sub epithelial micro flap technique. Acta Chir Iugosl. 2008;55(4):43-7.

Schweinfurth, J., MD. (2016, March 21). Vocal Fold Cysts Treatment & Management (A. D. Meyers MD, Ed.). Retrieved February 21, 2017, from http://emedicine.medscape.com/article/866019-treatment#d13

D. Aarno, S. Ekvall, and D. Kragic. Adaptive virtual fixtures for machine-assisted teleoperation tasks. In Proc. *IEEE Intl. Conf. on Robotics and Automation*, pages 1151-1156, 2005.