Automatic Identification of Critical Areas of the Head and
Neck for Refined Dose-Toxicity Analysis in Radiotherapy

Design, implement, and evaluate an algorithm that creates spatially
dependent dose features at the inter-organ level to identify specific areas
of the head and neck that are more or léss critical and sensitive to
radiation damage.

What Students Will Do:

— Work with an existing database of over 900 radiation oncology patients

— Develop a method to normalize the full anatomy based on standard set of commonly
contoured regions

— Develop an algorithm to identify non-contoured anatomical regions based existing
contoured anatomy to find specific locations and spatially depéndent dose featurées related
to radiation induced toxicities

— Generalize the model to enable the creation of spatially dependent features of the dose
such as principle component analysis or gradient based features of the dose

— Evaluate the impact of these features on taste, xerostomia and dysphagia toxicities with
existing analysis tools.

Deliverables:
— An atlas normalization method that maps all patients to a comment geometry
— A method of defining a spatial region within the normalized atlas

— An algorithm for creating spatially dependent features of the radiation dose in regions of
the head and neck relative to existing contoured anatomy

— Evaluated toxicity models for taste, xerostomia and dysphagia
Size group: 1-3
Skills:

— 3D shapes, Volumetric Image Segmentation

— Programming experience (SQL, C, C#, python)

Mentors: Todd McNutt (tmcnuttl @jhmi.edu) Sierra Cheng(zcheng4@jhmi.edu)

Error Correction for Treatment Planning and a Learning
Health System in Radiotherapy

The goal is to improve the integrity of the anatomical 3D contours used in a
learning health system with tools that can identify potentially erroneous data.
— A second goal is to detect errant longitudinal measures such as weight.
— The tools will tag or correct them and provide feedback in the clinical workflow.

What Students Will Do:
— Develop framework to run on the database that respond to errant data

— Detect errant contours utilizing the database of hundreds prior patient’s anatomical contours
as a norm
— Detect errant longitudinal data such as excessive changes in clinical status (e.g .weight)
— Allow for customized data integrity checks to be added as needs are identified.
— The system will be constructed to report findings in 3 ways
Listed report of all detected errors

Ability to tag data as suspect
Provide real time check on single data point entry when it is possible

Deliverables:
— The overall framework for errant contour detection
— Documented API for developing new integrity checks
Size group: 1-3
Skills:
— 3D shapes, Volumetric Image Segmentation
— Programming experience (SQL, C, C#, python)
Mentors:

— Todd McNutt (tmcnuttl@jhmi.edu)
— Sierra Cheng (zcheng4@jhmi.edu)
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Which patient will do better?

63-year-old man with T3 N2b MO Stage IVA Squamous cell
carcinoma, NOS of the Malignant neoplasm of larynx

eutt Smeting

69-year-old man with Stage Squamous cell carcinoma, NOS
of the Right Malignant neoplasm of tonsil
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Learning Health System
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Spatially dependent features
of dose in the structures e v
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