Programming Assignment 5 - 601.455/655 Fall 2022

Score Sheet (hand in with report) Also, PLEASE INDICATE WHETHER YOU ARE IN 601.455 or 601.655 (one in each section is OK)

NOTE: This is an optional assignment.

If you hand it in, I will use the grade to replace the lowest other programming assignment or written homework assignment with one exception:
You may not drop both HW\#4 and HW\#5. If these are your two lowest grades, then I will drop the lower of those two under the drop 1 homework scenario and replace the next lowest grade (other than the other of HW\#4-5) with this score

Instructions

- You should hand in a report containing the following:
- A narrative report summarizing
- The mathematical approach taken
- The algorithmic steps followed
- An overview of the structure of the computer program, sufficient to enable someone with reasonable skill (the grader) to understand your approach and follow your code.
- The steps taken to verify that the program is working correctly. Typically, this would take the form of a discussion of the results using the debugging examples, together with a discussion of unit tests, creation of your own debugging data, etc.
- A tabular summary of the results obtained for unknown data
- A short discussion for the results of running your program. This certainly includes the tabular summary above, but may also include a discussion of convergence if you adopt an iterative process or of difficulties if you suspect that your answer is wrong.
- A short statement of who did what.
- You will also upload a directory containing
- A directory called "PROGRAMS", containing (at least) all source files for your program, together with a file "README.TXT", containing the names of all the source files, together with a 1-line description of each file. Optionally, you may also include an executable program and instructions for using it.
- Note that the graders will attempt to compile and run your program.
- Another directory, called "OUTPUT", containing the program output files in the specified format and with the specified name (see below).
- The TAs will specify how and where these things are to be uploaded.

Abstract of the Problems

- In these problems, you will be asked to extend the ICP program of assignments 3 and 4 to perform a simple deformable registration. The input files are similar to the earlier exercises. They include
1.A 3D surface, represented as a mesh of triangles. You will be given the coordinates of the vertices of this mesh in CT coordinates. For the purposes of this exercise, you can think of this object as being a bone. In this case, the surface will represent the "average" shape of the bone.

2. An atlas "modes" file, giving modes of variation for the model. "Mode 0" represents the average shape (i.e., the shape provided in the mesh file). If $\overrightarrow{\mathbf{m}}_{m, k}$ represents a 3D value associated with vertex k and mode m, then the actual coordinate of vertex k will be given by

$$
\overrightarrow{\mathbf{m}}_{k}=\overrightarrow{\mathbf{m}}_{0, k}+\sum_{m=1}^{N_{\text {mades }}} \lambda_{m} \overrightarrow{\mathbf{m}}_{m, k}
$$

3. A pair of definition files for two rigid bodies, "A" and "B". Each file gives the positions of LED markers \vec{A}_{i} and \vec{B}_{i} in body coordinates, together with the positions of two tips $\vec{A}_{t i p}$ and $\vec{B}_{t i p}$
in body coordinates. As shown in the illustration below, we assume that the "tip" of the B rigid body is rigidly screwed into the bone in some unknown orientation. The A rigid body is used as a pointer. I.e., its tip is placed into contact with a number of points on the surface of the bone.
4.A file of "sample" readings giving the positions and $\overrightarrow{\mathbf{b}}_{i, k}$ of the LED markers relative to an optical tracker when each sample k is taken.

- You are to output the CT coordinates $\overrightarrow{\mathbf{c}}_{k}$ corresponding to each sample taken, for the "deformed" atlas, together with the values for the λ_{m}.
- Note that this assignment is based loosely on the "active appearances" method of Cootes and Taylor and of other authors:

1. T. F. Cootes and C. J. Taylor, "Combining Elastic and Statistical Models of Appearance Variation," in Proc. European Conference on Computer Vision, vol. 1, 2000, pp. 149-163.
2. T. F. Cootes and C. J. Taylor, "Statistical Models of Appearance for Computer Vision," 2000.
3. T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A Unified Framework for Atlas Matching using Active Appearance Models," in IPMI: Spinger, 1999, pp. 322-333.
4. J. Yao and R. H. Taylor, "Non-Rigid Registration and Correspondence in Medical Image Analysis Using MultipleLayer Flexible Mesh Template Matching," International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI), vol. 17(7), pp. in press, 2003.
5. J. Yao and R. H. Taylor, "A Multiple-Layer Flexible Mesh Template Matching Method for Non-rigid Registration between a Pelvis Model and CT Images," in SPIE Medical Imaging. San Diego, 2003, pp. 1117-1124.
6. J. Yao and R. H. Taylor, "Deformable registration between a statistical bone density atlas and X-ray images," in Second International Conference on Computer Assisted Orthopaedic Surgery (CAOS 2002). Santa Fe: CAOS International, 2002.
7. M. Fleute and S. Lavallee, "Nonrigid 3-D/2-D Registration of Images Using Statistical Models," in MICCAI 99, Springer Lecture Notes in Computer Science. Cambridge, UK,, 1999, pp. 138-147.

Figure 1: Scenario

Hints on suggested procedure

- Start with your program for Programming Assignment \#4.
- Input the data and verify that the vertices of the mesh you have read in are the same as "Mode 0".
- Perform an initial "rigid" registration using the method for Programming Assignment \#4. This will produce a rigid transformation $\mathbf{F}_{\text {reg }}{ }^{(0)}$
- Let $\overrightarrow{\mathbf{s}}_{k}{ }^{(t)}=\mathbf{F}_{\text {reg }}{ }^{(t)} \bullet \overrightarrow{\mathbf{d}}_{k}$ be your current estimate of transformed sample point k at iteration t, where $\mathbf{F}_{\text {reg }}{ }^{(t)}$ is the current estimate of the rigid transformation, and $\overrightarrow{\mathbf{d}}_{k}=\mathrm{F}_{B, k}{ }^{-1} \bullet \mathrm{~F}_{\mathrm{A}, \mathrm{k}} \bullet \vec{A}_{t i p}$ represents the corresponding measured sample point value.
- Suppose $\overrightarrow{\mathbf{c}}_{k}{ }^{(t)}$ represents your current estimate of the closest point on the deformed surface to the transformed sample point. Then $\overrightarrow{\mathbf{c}}_{k}{ }^{(t)}$ will be on some triangle. Suppose the vertex indices of this triangle are $\{s, t, u\}$. Then the coordinates of the corresponding deformed mesh will be

$$
\begin{align*}
& \overrightarrow{\mathbf{m}}_{s}=\overrightarrow{\mathbf{m}}_{0, s}+\sum_{m=1}^{N \text { modes }} \lambda_{m}{ }^{(t)} \overrightarrow{\mathbf{m}}_{m, s} \\
& \overrightarrow{\mathbf{m}}_{t}=\overrightarrow{\mathbf{m}}_{0, t}+\sum_{m=1}^{N \text { modes }} \lambda_{m}{ }^{(t)} \overrightarrow{\mathbf{m}}_{m, t} \tag{1}\\
& \overrightarrow{\mathbf{m}}_{u}=\overrightarrow{\mathbf{m}}_{0, u}+\sum_{m=1}^{N \text { modes }} \lambda_{m}{ }^{(t)} \overrightarrow{\mathbf{m}}_{m, u}
\end{align*}
$$

- If we compute the barycentric coordinates of $\overrightarrow{\mathbf{c}}_{k}{ }^{(t)}$ on the triangle

$$
\overrightarrow{\mathbf{c}}_{k}^{(t)}=\zeta_{k} \overrightarrow{\mathbf{m}}_{s}+\xi_{k} \overrightarrow{\mathbf{m}}_{t}+\psi_{k} \overrightarrow{\mathbf{m}}_{u}
$$

we can get an expression in terms of mode coordinates $\overrightarrow{\mathbf{c}}_{k}{ }^{(t)}$

$$
\begin{equation*}
\overrightarrow{\mathbf{c}}_{k}^{(t)}=\overrightarrow{\mathbf{q}}_{0, k}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}^{(t)} \overrightarrow{\mathbf{q}}_{m, k} \tag{2}
\end{equation*}
$$

where

$$
\overrightarrow{\mathbf{q}}_{m, k}=\zeta_{k} \overrightarrow{\mathbf{m}}_{m, s}+\xi_{k} \overrightarrow{\mathbf{m}}_{m, t}+\psi_{k} \overrightarrow{\mathbf{m}}_{m, u}
$$

and $\Lambda^{(t)}=\left\{\lambda_{1}, \cdots, \lambda_{N_{\text {modes }}}\right\}^{(t)}$ represents the current estimate of the mode weights. So

$$
\begin{align*}
& \overrightarrow{\mathbf{s}}_{k}{ }^{(t)}=\mathbf{F}_{r e g}{ }^{(t)} \bullet \overrightarrow{\mathbf{d}}_{k} \\
& \overrightarrow{\mathbf{c}}_{k}{ }^{(t)}=\overrightarrow{\mathbf{q}}_{0, k}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}{ }^{(t)} \overrightarrow{\mathbf{q}}_{m, k} \tag{3}
\end{align*}
$$

should represent the same point. I.e.,

$$
\begin{equation*}
\mathbf{F}_{r e g}{ }^{(t)} \bullet \overrightarrow{\mathbf{d}}_{k} \approx \overrightarrow{\mathbf{q}}_{0, k}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}{ }^{(t)} \overrightarrow{\mathbf{q}}_{m, k} \tag{4}
\end{equation*}
$$

Note: In the above, remember that s, t, u also depend on $\overrightarrow{\mathbf{c}}_{k}$.

- Now, you have a few choices. One choice is to iterate the following sequence:
- Iterate the following sequence some number of times until it seems to be stalled:
- Keeping $\overrightarrow{\mathbf{s}}_{k}{ }^{(t)}$ fixed, find the corresponding $\overrightarrow{\mathbf{q}}_{m, k}$ solve the following least squares problem for $\Lambda^{(t+1)}=\left[\lambda_{1}^{(t+1)}, \cdots, \lambda_{N \text { modes }}^{(t+1)}\right]$

$$
\begin{equation*}
\overrightarrow{\mathbf{s}}_{k}{ }^{(t)} \approx \overrightarrow{\mathbf{q}}_{0, k}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}^{(t+1)} \overrightarrow{\mathbf{q}}_{m, k} \tag{5}
\end{equation*}
$$

- Use $\Lambda^{(t+1)}$ to update the surface mesh model to find a new estimate for the vertices of the deformed model.
- If you are using a spatial data structure to speed your search, make the appropriate updates. E.g., if you are using some form of bounding box tree, update the bounds. Note that it is not always necessary to completely recompute the tree, since some loss of efficiency is ok.
- Now, find new matching points $\overrightarrow{\mathbf{c}}_{k}^{(t+1)}$
- Iterate for a while, until you meet some suitable stopping condition
- After this iteration converges, keep the model vertices fixed and use the method of PA\#4 to re-estimateF ${ }_{\text {reg }}{ }^{(t)}$. Use the result to retransform the sample points.
- Iterate this sequence (mode matching, rigid body transformation, ...) until done.
- Alternatively, you can combine the two iterations by using a linearized form of Equation (4):

$$
\begin{array}{r}
\mathbf{F}_{r e g}{ }^{(t+1)} \bullet \overrightarrow{\mathbf{d}}_{k}=\overrightarrow{\mathbf{C}}_{k}{ }^{(t)}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}{ }^{(t+1)} \overrightarrow{\mathbf{q}}_{m, k} \\
\Delta \mathbf{F}^{(t+1)} \bullet \mathbf{F}_{r e g}{ }^{(t)} \bullet \overrightarrow{\mathbf{d}}_{k}=\overrightarrow{\mathbf{C}}_{k}{ }^{(t)}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}{ }^{(t+1)} \overrightarrow{\mathbf{q}}_{m, k} \tag{6}\\
\Delta \mathbf{F}^{(t+1)} \bullet \overrightarrow{\mathbf{S}}_{k}^{(t)}=\overrightarrow{\mathbf{C}}_{k}^{(t)}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}{ }^{(t+1)} \overrightarrow{\mathbf{q}}_{m, k} \\
\overrightarrow{\mathbf{S}}_{k}{ }^{(t)}+\vec{\alpha}^{(t+1)} \times \overrightarrow{\mathbf{S}}_{k}{ }^{(t)}+\vec{\varepsilon}^{(t+1)} \approx \overrightarrow{\mathbf{C}}_{k}{ }^{(t)}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}{ }^{(t+1)} \overrightarrow{\mathbf{q}}_{m, k}
\end{array}
$$

where $\Delta \mathbf{F}=[\Delta \mathbf{R}(\vec{\alpha}), \vec{\varepsilon}]$. This rearranges to

$$
\begin{equation*}
\overrightarrow{\mathbf{s}}_{k}{ }^{(t)} \times \vec{\alpha}^{(t+1)}-\vec{\varepsilon}^{(t+1)}+\sum_{m=1}^{N_{\text {modes }}} \lambda_{m}{ }^{(t+1)} \overrightarrow{\mathbf{q}}_{m, k} \approx \overrightarrow{\mathbf{s}}_{k}^{(t)}-\overrightarrow{\mathbf{c}}_{k}^{(t)} \tag{7}
\end{equation*}
$$

- In this case, you do the following:
- Solve (7) to estimate $\Lambda^{(t+1)}, \vec{\alpha}^{(t+1)}$, and $\vec{\varepsilon}^{(t+1)}$. Use $\vec{\alpha}^{(t+1)}$ and $\vec{\varepsilon}^{(t+1)}$ to produce a real value for $\Delta \mathbf{F}^{(t+1)}$, remembering that you need to make a proper rotation, and cannot just use a skew matrix.
- Update $\overrightarrow{\mathbf{s}}_{k}$ and the mesh using $\Delta \mathbf{F}^{(t+1)}$ and $\Lambda^{(t+1)}$. Again, remember that you may have to update bounding boxes or other spatial data structures.
- Now, find new matching points $\overrightarrow{\mathbf{c}}_{k}^{(t+1)}$
- Iterate for until you meet some suitable stopping condition.
- I solved the problems both ways. You can even mix them. In solving the problem, I used the first method, followed by the second method.
- NOTE: Again, there are other ways to approach this problem, as well. You are free to develop an alternative algorithm so long as you explain it clearly and explain your reasoning.

Input data

You will be given a rigid body design files "ProblemX-BodyY" where X is 3 or 4 and Y is A or B . These files have the following format

Record	Data	Comments
0	$N_{\text {markers }}$ "ProblemX-BodyY"	Number of marker LEDs Filename
Next records$N_{\text {makers }}$	Y_{x}, Y_{y}, Y_{z}	xyzcoordinates of marker LEDs in body coordinates
Next record	t_{x}, t_{y}, t_{z}	xyz coordinates of tip in bocy coordinates

Each line (record) of the file will terminate with an end of line character.

The format of the body surface definition file "ProblemXMesh.sur"

Record	Data	Comments
0	$N_{\text {vertices }}$	Number of vertices
Next records	$N_{\text {vertices }}$	V_{x}, V_{y}, V_{z}
Next record	$N_{\text {triangles }}$	$x y z$ coordinates of vertices in CT coordinates
Next $N_{\text {triangles }}$ records	$i_{1}, i_{2}, i_{3}, n_{1}, n_{2}, n_{3}$	Vertex indices of the three vertices for each triangle, followed by triangle indices for the three neighbor triangles opposite to the three vertices (not needed for this problem). "-1" means not a valid neighbor.

The format of the atlas modes file is as follows:

Record	Data	Comments
0	Problem5Modes.txt Nvertices=nnnn Nmodes=mmm	nnnn = Number of vertices mmm = Number of modes
1	Mode \quad :Average Vertex Values	Just a comment
Next records$\quad N_{\text {verices }}$	$V_{x}, V_{y}, V_{z} \quad$xyzcoordinates of vertices in CT coordinates of "mode 0" - I.e., the mean shape	
Next record	Mode 1 :Vertex Displacement	Just a comment
Next $N_{\text {verices }}$ records	$D_{x}, D_{y}, D_{z} \quad$ Vertex displacements for mode 1	
Next record	Mode 2 :Vertex Displacement	Just a comment
\ldots et ceteraet ceteraet cetera ...

Note that the number of modes in the atlas file may exceed the number of modes to be used in any individual problem.

Finally, you will be given a file of sample readings "pa5-X-ddddd- N samps SampleReadings.txt", where X is a letter and ddddd is "debug" or "unknown". This file has the following format.

Record	Data	Comments
0	$N_{s}=N_{A}+N_{B}+N_{D}, N_{\text {samps }}$, "pa5-X-ddddd- SampleReadings.txt", $N_{\text {modes }}$	Number of LEDs read by the tracker in each sample frame ("A" markers, "B" markers, "Dummy" markers)
		Number of sample frames File name, Number of modes you are to use from the atlas in solving this problem

Next N_{A} records	x, y, z	xyzcoordinates of A body LED markers in tracker coordinates
Next N_{B} records	x, y, z	xyzcoordinates of B body LED markers in tracker coordinates
Next $N_{D}=N_{S}-N_{A}-N_{B}$ records	x, y, z	xyzcoordinates of other (unneeded) LED markers in tracker coordinates
This pattern of N_{s} records is repeated for a total of times.	See above	Additional sets of data corresponding to each sample

Output Data

You should produce an output data file with the format.

Record	Data	Comments
0	$N_{\text {samps }}$, "pa5-X-Output.txt", $N_{\text {modes }}$	Number of sample frames
File name		

determined (give 4

decimal places)\end{array}\right|\)| ($1, \ldots, \lambda_{\text {Nmodes }}$ |
| :--- |
| 1 |

For debugging purposes, I have provided the output my program got. I have also included an "answer" file that contains data used to generate
the test problems. In some cases the answer data will also have non-zero error due to various simulated noise.

