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Deformable Registration

   Im(
!
x)    Im(Φ(

!
ρ,
!
x))

• Many different ways to parameterize the deformation function
• Typically some version of a spline or radial basis function

• One desirable (though not universal) property: diffeomorphism
• A function Φ is diffeomorphic if Φis bijective and both Φ and Φ-1 are smooth

Images: Tom Fletcher
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Deformable Registration

Moving Image
M

Target Image
T

   

Compare images
and update 

!
ν

    

Apply deformation
φ(
!
ν )(M)

   Deformation parameters 
!
ν
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!
y =Φ( !ρ,

!
x)

Deformable Registration from Point Cloud Matches

Images: Tom Fletcher

Suppose that we have a bunch of corresponding point locations between an 
initial shape and a deformed shape.  How can we use these point matches to 
compute a general deformation?

   
!
x i    

!
y i
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Deformable warping from point cloud matches

• One answer would be the deformable Coherent Point 
Drift algorithm (Myronenko & Song, IEEE PAMI, 2010)

• Another answer might make use of what we learned in 
programming assignments
– E.g., fit Bernstein or B-spline polynomials to determine distortion.

– Note: In this case, the coefficients will also parameterize the 
“shape”

     

!
u =TrimToBox(

!
x)

!
y =

!
ci, j ,kBi (ux )

i, j ,k
∑ Bj (uy )Bk (uz )

    or    
!
y =

!
ci, j ,kNi (ux )

i, j ,k
∑ Nj (uy )Nk (uz )    
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Radial Basis Functions

      

Given a scalar function φ(i) and a set of sample points 
!
pk  with 

associated deformations 
!
dk ,  one can represent the deformation Φ 

at a point 
!
x by

Φ(
!
x) =

!
dkφk

!
x−
!
pk( )k∑

• Many possible functions to use for φ

• Common choices include Gaussians and  “thin plate splines”, which have 
non-compact support (i.e., Φ(y)>0 for arbitrarily large y)

• Others have compact support (i.e., Φ(y)=0 for |y|> some value)*

* See: M. Fornefett, K. Rohr, and H. S. Stiehl, "Radial basis functions with compact support for elastic 
registration of medical images", Image and Vision Computing, vol. 19- 1‚Äì2, pp. 87-96,  2001. 
http://www.sciencedirect.com/science/article/pii/S0262885600000573   
http://dx.doi.org/10.1016/S0262-8856(00)00057-3
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Thin Plate Splines

• Minimum energy spline deformations

• Global support
• Popularized by Fred Bookstein for analysis of anatomic 

variation
– F. L. Bookstein, Morphometric tools for landmark data, Geometry and 

biology: Cambridge University Press, 1991.

TPS(
!
v;
!
a,B,C,P)=

!
a+B•

!
v+

!
cii∑ U(

!
v−
!
pi )   

where U(r )= r 2 log r( )   for 2D images
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Thin Plate Splines Digression
• Some citations (from G. Donato and S. Belongie, “Approximation Methods 

for Thin Plate Spline Mappings and Principal Warps”, 2002; 
http://www.cs.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2003-0764 )
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M-dimensional Thin Plate Spline Summary

     

Given

TPS(
!
v;
!
a,B,C,P) =

!
a +B •

!
v +

!
cii∑ U(

!
v−
!
pi )    

where 

U(r ) = r 2 log r( )   for 2D

= r 2 log r 2( ) for 3D
!
v = v1,",vM
⎡
⎣

⎤
⎦
T

!
pi = p1,",pM

⎡
⎣

⎤
⎦ i

T

P =
!
p1,",

!
pN

⎡
⎣

⎤
⎦
T

C =
!
c1,",

!
cN

⎡
⎣

⎤
⎦

B =
!
b1,",

!
bM

⎡
⎣⎢

⎤
⎦⎥

Note: Some sources give

U(r ) = r 4−m ln(r ) for m=2 or 4

r 4−m otherwise

⎧
⎨
⎪

⎩⎪
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M-dimensional Thin Plate Spline Fitting

     

Given

V =
!
v1,",

!
vN

⎡
⎣

⎤
⎦     F =

!
f1,",

!
fN

⎡
⎣⎢

⎤
⎦⎥

   

find 
!
a, B,C such that
!
fi =TPS(

!
v i ;
!
a, B,C,V)

To do this, solve the linear system

K[NxN ]

!
1[N×1] V

!
1[1×N ] 0 0

VT 0 0[M×M ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

CT

!
aT

BT

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
FT

0
0[M×1]

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where

K i, j = K j ,i = U
!
v i −
!
v j( )    with U(r ) = r 2 logr  or U(r ) = r 2 logr 2

K i, j =
!
v i −
!
v j( )•

!
v i −
!
v j( )log

!
v i −
!
v j( )•

!
v i −
!
v j( )( )
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TPS 2D case 

     

Given a set of points 
!
pi = xi ,yi

⎡
⎣

⎤
⎦  and corresponding points 

!
pi * = xi *,yi *⎡

⎣
⎤
⎦ , 

 we want to find TPS parameters such that  
!
pi * =TPS(

!
pi ;
!
a,B,C,P) 

To do this, we solve the least squares problem

                

0 " U1,k " U1,N 1 x1 y1

# $ Uij # # #

Uk,1 " 0 " Uk,N 1 xk yk

# Uij $ # # # #

UN,1 " UN,k " 0 1 xN yN

1 " 1 " 1 0 0 0
x1 " xk " xN 0 0 0

y1 " yk " yN 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

•

!
c1

#

#

#
!
cN!
a
!
bx!
by

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

!
p1 *

#
!
pk

*

#
!
pN *
!
0
!
0
!
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

where Ui,j=Uj,i=U(
!
pi −

!
p j ) 
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M-dimensional Thin Plate Spline Fitting

     

Define

L[M+N+1×M+N+1] =

K[NxN ]

!
1[N×1] V

!
1[1×N ] 0 0

VT 0 0[M×M ]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

   

If there are many points, this matrix may be expensive to 
invert or even pseudo-invert.  There are various methods
to deal with this problem.  These include

•  Use a random sample of the 
!
v i  to approximate the solution

•  Use a random sample of the basis functions & all data 
    to solve problem in least squares sense
•  Use matrix approximation methods 

See 
 http://www.cs.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2003-0764
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Other Radial Basis Functions

Note that the function U(r ) in the previous discussion is a 
an example of a more general class of "radial basis functions".
These functions can be used in deformable registration in much the same
way as the TPS function used above.  Other commonly used radial
basis functions include

U(r )= (r 2+c2)µ  for µ∈!+
U(r )= (r 2+c2)−µ  for µ∈!+
U(e)= e−r

2 /2σ2

The last one is probably the most popular for global support.  There
are also radial basis functions with "compact" support.  For example*  

     

Ψ(r,σ) = I 1− r
σ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

k+1+ d /2

   if 0≤ r ≤σ 

0               otherwise

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

* See: M. Fornefett, K. Rohr, and H. S. Stiehl, 
"Radial basis functions with compact support for 
elastic registration of medical images", Image 
and Vision Computing, vol. 19- 1‚Äì2, pp. 87-96,  
2001. 
http://www.sciencedirect.com/science/article/pii/
S0262885600000573   
http://dx.doi.org/10.1016/S0262-8856(00)00057-
3
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Deformable Registration to Statistical “Atlases”

Deformable 2D/3D
Ofri Sadowsky

Deformable 3D/3D
Jianhua Yao

15
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Deformable Altas-based Registration 

• Much of the material that follows is derived from the Ph.D. thesis work of 
J. Yao, Ofri Sadowsky, and Gouthami Chintalapani:
– J. Yao, “Statistical bone density atlases and deformable medical image registrations”, Ph. 

D. Thesis, Computer Science, The Johns Hopkins University, Baltimore, 2001.
– O. Sadowsky, "Image Registration and Hybrid Volume Reconstruction of Bone 

Anatomy Using a Statistical Shape Atlas,” Ph.D. Thesis, Computer Science, The 
Johns Hopkins University, Baltimore, 2008

– G. Chintalapani, Statistical Atlases of Bone Anatomy and Their Applications, Ph.D. thesis 
in Computer Science, The Johns Hopkins University, Baltimore, Maryland, 2010.

• A number of other authors, including
– Cootes et al. 1999 – “Active Appearance Models”
– Feldmar and Ayache 1994
– Ferrant et al. 1999
– Fleute and Lavallee 1999
– Lowe 1991
– Maurer et al. 1996
– Shen and Davatzikos 2000

16
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• An atlas that incorporates statistics of anatomical shape and 
intensity variations of a given population

What is a “Statistical Atlas” ?

Statistical 
Information of shape, 
intensity etc

Credit: G. Chintalapani 2010

17
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Statistical Atlases

CT scans from a population

Shape distribution

Intensity distribution

??

Slide Credit: G. Chintalapani 2010
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Statistical models

• The next few slides will review the use of the Singular Value 
Decomposition (SVD) in constructing statistical shape models.

• There is a close relationship between this material and the 
“principal components analysis” (PCA) methods you may have 
encountered in a statistics class.

19
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Principal Components Analysis (PCA)

    

Suppose that you have a set of N  vectors 
!
ai  in an M dimensional space?

Is there a natural "coordinate system" for these vectors?

20
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Principal Components Analysis (PCA)
We proceed as follows

!
a(avg ) =

!
aii∑

N
;   
!
bi =

!
ai −
!
a(avg );  B=

!
b1,!

"
bN

⎡
⎣⎢

⎤
⎦⎥
;

Then form the singular value decomposition

B=UΣVT =U Σ(N )

0

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
VT   where Σ(N ) = diag(σ1,!,σN )

Then we note that BBT =UΣ2UT .  Of course U is huge, but we have the 
following useful fact.  We note that

B=
!
u1,!,

"
uN,
!
uN+1,!,

"
uM⎡

⎣
⎤
⎦

σ1

!
σN

0 0 0
! ! !

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

VT =
!
u1,!,

"
uN⎡

⎣
⎤
⎦Σ

(N )VT =U(N )Σ(N )VT

21
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Principal Components Analysis (PCA)

      

This means that any column 
!
bkof B may be expressed as a linear 

combination of the first N columns of U

B =
!
u1,",

!
uN

⎡
⎣

⎤
⎦ Σ

(N )VT = U(N )Σ(N )VT

!
bk =λ1

(k )!u1 +"+λN
(k )!uN = U(N )Λ(k )

where

Λ(k ) = transpose(U(N ) )
!
bk

So
!
ak =

!
a(avg ) +

!
bk =

!
a(avg ) +λ1

(k )!u1 +"+λN
(k )!uN

But often the last few values of the λk  are small.  If we ignore all but

the first D values, we have
!
ak ≈

!
a(avg ) +λ1

(k )!u1 +"+λD
(k )!uD

22
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Principal Components Analysis (PCA)

      

Suppose now that we have an arbitrary 
!
a(arb).  We can 

approximate 
!
a(arb)  as follows:

!
b(arb) =

!
a(arb)−

!
a(avg )

Λ(arb) = transpose(U(D ) )
!
b(arb)

!
a(arb) ≈

!
a(avg ) +λ1

(arb)!u1 +"+λD
(arb)!uD

    
!
a(arb)

    
!
a(approx)

23
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Statistical Atlases & PCA

     

Given a set of N models 
!
X( j) =

!
xk

( j )⎡
⎣⎢

⎤
⎦⎥
T

= "xk
( j ),yk

( j ),zk
( j ),"⎡

⎣⎢
⎤
⎦⎥ ,  compute  

 
!
X(avg) =

#
!
xk

(avg )

#

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  where 
!
xk

(avg ) =
1
N

!
xk

( j )

j
∑  and the differences

!
D( j ) =

!
X( j)−

!
X(avg) =

#
!
dk

( j )

#

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where 
!
dk

( j ) =
!
xk

( j )−
!
xk

(avg ).  Create the matrix

 

D = "
!
D( j ) "⎡

⎣⎢
⎤
⎦⎥ 3Nvertices×N⎡
⎣⎢

⎤
⎦⎥
=

!
d1

(1)

#
!
dk

(1)

#
!
dNvertices

(1)

"

"

"

!
dk

(1)

#
!
dk

( j )

#
!
dNvertices

( j )

"

"

"

!
d1

(1)

#
!
dk

(N )

#
!
dNvertices

(N )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

24
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Statistical Atlases & PCA
Compute the singular value decomposition of D
  

D=UΣVT where Σ= diag(
!
σ)

0
 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

D=U diag(
!
σ)VT

0
 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Note that 

1
N−1

DTD= 1
N−1

VΣUTUΣVT = 1
N−1

VΣ2VT

1
N−1

DDT = 1
N−1

UΣVTVΣUT = 1
N−1

UΣ2UT

25
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Statistical Atlases & PCA

      

Any individual model D( j )   can be written as a linear combination of the 

columns of U.  Treating 
!
D( j )  as a column vector, we can write this as

D
"!( j )

= U•

λ1
( j )

#
λN

( j )

!
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

   where 

λ1
( j )

#
λN

( j )

!
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

  is the j th  column of diag(
!
σ)VT

0
 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

If we define 

M = U(1) $ U(N )⎡
⎣⎢

⎤
⎦⎥   (i.e., the first N  columns of U)

we get the expression

D
"!( j )

= M
!
λ   where 

!
λ  is the j th  column of diag(

!
σ)VT( ).

26
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Statistical Atlases & PCA

     

Note that while U is 3Nvertices×3Nvertices  (i.e.,  huge), M has only the first
N  columns, since there are at most N  non-zero singular values

In fact, we usually also truncate even more, only saving columns
corresponding to relatively large singular values σi .  Since the standard
algorithms for SVD produce positive singular values σi sorted in descending
order, this is easy to do. 

Note also, that since the columns of M are also columns of U, they are
orthogonal.  Hence MTM = IN×N .  But MMT = C will be an 
3Nvertices×3Nvertices  matrix that will not in general be diagonal.

27
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Statistical Atlases & PCA
As a practical matter, it is  not a good idea to ask your SVD program
to produce the full matrix U for an 3Nvertices×N  matrix D.  Many SVD

packages give you the option to compute only the singular values 
!
σ

and the right hand side matrix V or its transpose.  Then, M  can be
computed from 

Mdiag(
!
σ)VT =D

Mdiag(
!
σ)=DV
M=DVdiag(

!
σ)−1

=DV

1/ σ1 0 ! ! 0

0 " #
# 1/ σk !

! " 0
0 # # 0 1/ σN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

28
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Statistical Atlases & PCA

      

Similarly,  given a vector 
!
D(inst)  we can find

a corresponding vector 
!
λ (inst)  from the following 

 
!
D(inst) = M

!
λ (inst)

MT
!
D(inst) = MTM

!
λ (inst)

=
!
λ ( inst )

29
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Statistical Atlases & PCA

      

Suppose that we select  
!
λ = [λ1,",λN ]T  as a random variable with some 

distribution having expected value E(
!
λ) =

!
0 and covariance

cov(
!
λ) = E(

!
λ •
!
λT ) =

E(λ1
2 ) " E(λ1λN )

# $ #

E(λNλ1) " E(λN
2 )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=Σ2

and compute a corresponding random model 
!
X( 
!
λ)

!
X (
!
λ) =

!
X(avg ) +M•

!
λ   

What can we say about the expected value and covariance of 
!
X( 
!
λ)?

30
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Statistical Atlases & PCA

      

For the expected value, we have

E(
!
X(
!
λ)) = E(

!
X(avg ) +M•

!
λ)

=
!
X(avg ) +M• E(

!
λ) =

!
X(avg ) +M•

!
0

=
!
X(avg )

Then 

cov(
!
X(
!
λ)) = E(

!
D(
!
λ)•
!
D(
!
λ)T )   where   

!
D(
!
λ) =

!
X(
!
λ)−

!
X(avg )

= E(M•
!
λ •
!
λT •M)

= M• E(
!
λ •
!
λT )•MT

= M•Σ2 •MT

31
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Statistical Atlases & PCA

      

Thus, if we assemble a representative sample set of models 
!
X( j ), and 

compute the average model 
!
X(avg )  and the 

SVD of the corresponding matrix D = "
!
X( j )−

!
X(avg )( )⎡

⎣⎢
⎤
⎦⎥
, then

we have a way of generating an arbitrary number of models 

          
!
X(inst)=

!
X(avg )+M

!
λ ( inst )=

!
X(avg )+

!
M(k )λk

( inst )
k∑

with the same mean and covariance.   I.e., we know how the 

individual features 
!
xk

(inst)  co-vary. 

Further, given a representative model instance 
!
X( inst )  we can

compute a corresponding set of mode weights 
!
λ (inst)  from

     
!
λ (inst) = MT

!
X( inst )−

!
X(avg )( )
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Statistical Atlas

     

Thus, one representation of a statistical "atlas" of models consists of

• An average model 
!
X(avg )

• An eigen matrix M of variation modes

• A diagonal covariance matrix Σ2  for the modes 

This information may be used in many ways, including

• Atlas-based deformable segmentation/registration
• Statistical analysis of anatomic variation
• etc. 
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template image Training database of medical images

Parameterized representation of medical 
images

Aligned images in correspondence to the 
template

Statistical model/atlas

Statistical  Atlas Construction

Points, landmarks, meshes, parametric 
models, level sets 

Rigid, affine, deformable registration 
methods

PCA, ICA, Kernel PCA, non-
linear statistical methods

3. Statistical Analysis

2. Model Correspondence/Alignment

1. Model Representation/Parameterization

Slide Credit: G. Chintalapani 2010
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Model Creation

CT dataset Labelled CT

Mesher[2]

Segmentation of pelvis anatomy using Analyze[1]

Surface rendering of pelvis tetrahedral model; Cross-section of tetrahedral 
model showing CT densities

[1] Analyze, www.mayoclinic.org
[2] Mohammed et al., 2005 

Slide Credit: G. Chintalapani 2010
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Model Representation
Ø Tetrahedral mesh represents shape

Ø Bernstein polynomials approximate CT density within each
tetrahedron[1,2]

Ø Alternative is to use voxels directly after deformation to
mean shape
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[1] Yao, PhD Thesis, 2002; [2] Sadowsky, PhD Thesis, 2008
Credit: G. Chintalapani 2010
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• Need to establish a common coordinate frame for the training 
database

• Need to establish point correspondence between the training 
datasets

Model Correspondence

Slide Credit: G. Chintalapani 2010
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• Automatic deformable registration based shape correspondences

Model Shape Correspondences

Flowchart for establishing shape correspondences for the training sample

Mesher

3D/3D
registration

Template 
CT

Training 
CT 
Data sets

Template 
Mesh

Deformation
Field

Warped
Volumes

Mesh 
Instances 
for training 
data sets

Apply 
Deformation 
Field

[1] Rueckert et al., MICCAI 03

Slide Credit: G. Chintalapani 2010

Mohamed et al. ISBI 2004

Ellingsen et al.
JBMI 2009
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Model Intensity Correspondences

• Automatic deformable registration based correspondences

Flowchart for establishing intensity correspondences for the training sample

Mesher

3D/3D
registration

Template 
CT

Training 
CT 
Data sets

Template 
Mesh

Shape-Free
Warped CT

Deformation
Field

Polynomial
Coefficients (C) 
for training 
CT data sets

Fit
Polynomial

Mohamed et al. ISBI 2004

Ellingsen et al.
JBMI 2009
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Shape Statistics: Principal Component Analysis

• Given N mesh instances of training sample, create matrix of the vertices

• Compute mean and subtract the mean from the sample

• Compute 

• Alternative: compute SVD of deformation field

 

S= Ù s 1 Ù s 2 . . Ù s N
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S = S−s = S− 1

N
ŝi

i=1

N

∑

 

SVD(S ) =UDVT

With principal components in U and eigen values  

 

l =
1

N - 1
DDT

Slide Credit: G. Chintalapani 2010
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Principal Component Analysis

• Given the PCA model, any data instance can be expressed as a 
linear combination of the principal components

• Compact model à fewer components 

• Select first ‘d’ components represented by the ‘d’ eigen values

 

s + Uklk
k=1

N-1

å

Slide Credit: G. Chintalapani 2010
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Statistical Shape and Intensity Models

• Shape statistical model: Mesh vertices become data matrix

• Intensity statistical model: Polynomial coefficients become 
data matrix

 

s + Uk
k=1

d

å lk = s + UTl

 

c + Yk
k=1

p

å µk = c +UTµ

Slide Credit: G. Chintalapani 2010
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Deformable Registration Between Shape/Density 
Atlas and Patient CT

• Goal: Register and Deform the statistical density atlas to 
match patient anatomy

• Significance:
– Building patient specific model with same topology (mesh 

structure) as the atlas
– Automatic segmentation
– Accumulatively building models for training set
– Pathological diagnosis

Jianhua Yao
Slide credit: Gouthami Chintalapani
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Typical pipeline for atlas-assisted registration/registration

Image

Statistical
Atlas

Deformable model 
fitting to atlas

Deformable 
registration of 

model to image

Instance of atlas

Deformed 
instance
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Deformable model fitting

Image

E(·,·)

Optimization
Process

Create 
Instance

Statistical
Atlas

Predicted
Image

     

!
ρ* = argmin

ρ=[
!
θ ,
!
λ , !µ ]

E(Im1,Θ( !ρ,Im2)

   
!
ρ *

    Θ( !ρ,i)
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Deformable Registration Scheme

• Affine Transformation
– Translation T=(tx, ty, tz)
– Rotation R=(rx, ry, rz)
– Scale S=(sx, sy, sz)      [Similarity if sx= sy= sz]

• Global Deformation 
– Statistical deformation mode (Mi)

• Local Deformation
– Adjustment of every vertex

Jianhua Yao
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Optimization Algorithm
• Direction Set (Powell’s) method in multi-dimensions

– Search the parameter space to minimize the cost functions
– Advantage

• Don’t need to compute derivative of cost functions
• Much fewer evaluations than downhill simplex methods

• Alternatives
– Downhill Simplex (similar advantages)
– Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

method (similar advantages)
– Levenberg-Marquardt (requires computing gradients)
– Many others

Jianhua Yao
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Local Deformation

• Motivation: Statistical deformation can’t capture all the variability due 
to the limited number of models in the training set

• Locally adjust the location of vertices to match the boundary of the 
bone and the interior density properties

• Use multiple-layer flexible mesh template matching to find the 
correspondence between model vertices and image voxels

• Apply radial basis function (or other scheme) based on vertex-to-voxel 
location matches

Jianhua Yao
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Multiple-layer Flexible Mesh Template

v(0)

v1(1)

v2(1)

v3(1)v4(1)

v1(2) v2(2)

v3(2)

v4(2)

v5(2)v6(2)

v7(2)

v8(2)

• Each vertex on the model defines a 
mesh template

• Template is in the form

)),,(

),,(

,),,(

),,(,0(

2
)0()2(

1

2
)0()2(

1

1
)0()1(

2

1
)0()1(

1

!

!

rvvSphere
rvvSphere
rvvSphere
rvvSphere

−

−

−

−

Jianhua Yao
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Template matching

3

   
!
v0

   
!
v1

   
!
v2

   
!
v3

     

For each pixel location 
!
x0 :

   Place 
!
v0  at 

!
x0

   For each neighbor 
!
vk

      Find the 
!
xk  near 

!
vk  that minimizes E(

!
xk ,
!
vk )

   Score (
!
x0 ) = E(

!
x0,
!
v0 )+ wkE(

!
xk ,
!
vk )

k∑
Pick the 

!
x0with the best score
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Template matching

     

For each pixel location 
!
x0 :

   Place 
!
v0  at 

!
x0

   For each neighbor 
!
vk

      Find the 
!
xk  near 

!
vk  that minimizes E(

!
xk ,
!
vk )

   Score (
!
x0 ) = E(

!
x0,
!
v0 )+ wkE(

!
xk ,
!
vk )

k∑
Pick the 

!
x0with the best score 3

   
!
v0

   
!
v1

   
!
v2

   
!
v3

4
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Template matching

3

   
!
v0

   
!
v1

   
!
v2

   
!
v3

2
2

4

     

For each pixel location 
!
x0 :

   Place 
!
v0  at 

!
x0

   For each neighbor 
!
vk

      Find the 
!
xk  near 

!
vk  that minimizes E(

!
xk ,
!
vk )

   Score (
!
x0 ) = E(

!
x0,
!
v0 )+ wkE(

!
xk ,
!
vk )

k∑
Pick the 

!
x0with the best score

   Score = 4.6    (for wk = 0.2)
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Template matching

   
!
v0

   
!
v1

   
!
v2

   
!
v3

2
2

1

3

     

For each pixel location 
!
x0 :

   Place 
!
v0  at 

!
x0

   For each neighbor 
!
vk

      Find the 
!
xk  near 

!
vk  that minimizes E(

!
xk ,
!
vk )

   Score (
!
x0 ) = E(

!
x0,
!
v0 )+ wkE(

!
xk ,
!
vk )

k∑
Pick the 

!
x0with the best score

   Score = 3.2    (for wk = 0.2)
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Results (Affine Transformation)

Initial Intermediate Final 
Jianhua Yao
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Results (Global Deformation)

Initial Intermediate Final 
Jianhua Yao
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Results (Local Deformation)

Initial Intermediate Final 
Jianhua Yao
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Jianhua Yao

Deformable Atlas-to-CT Registration (3D-3D)
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Results (Deformable Registration)

Deformable Atlas/CT Registration
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Affine Global Deform Local Deform

Jianhua Yao
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Iterative “bootstrapping” of Atlas

Augmented 
3D/3D 
Deformable 
Registration

Update 
Statistics

Initial Atlas

Training datasets

Atlas

Updated 
Atlas

Bootstrapping loop

Mesh instances and 
warped volumes

Chintalapani et al. MICCAI 2007
Slide credit: Gouthami Chintalapani
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Leave-Out Validation Experiments 

• # of iterations: 5

• # of data sets: 110

• # of data sets in atlas: 90

• # of data sets left out: 20
• Given a left-out dataset, sj

compute the estimated shape from 
atlas using

Vertex-Vertex Distance
(mm)

Surface-Surface Distance
(mm)

 

l =U'*(sj - S )

 

s j
est = S +Ul

Slide credit: Gouthami Chintalapani
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Iteration 1

Iteration 3

Iteration 5

Distribution of Surface Registration Errors

Slide credit: Gouthami Chintalapani
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Choice of Initial Template

• Claim:
– iterative method  does not depend on the choice of template

• Criteria:
– Mean shape converges
– Modes exhibit similar deformation patterns

• Experimental setup:
– Three random templates
– Atlases with and without bootstrapping compared

• Result
– All three atlases exhibit similar deformation patterns after 

bootstrapping 

Slide credit: Gouthami Chintalapani
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Average Difference between Atlases 1,2  and 3

Mean

Mean + Mode 1

Mean + Mode 2

Mean + Mode 3 0mm

4.5mm

9mm

Before iteration After iteration
Slide credit: Gouthami Chintalapani
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Training Sample Size

• Goal: 
– To determine the size of the training sample to build a stable 

statistical atlas

• Criteria:
– Atlas is stable
– No significant improvement in residual error

• Experimental setup:
– Varying sample size 20, 40, 60, 80
– Leave-20-out validation test

• Result:
– Minimum of 50 data sets are required for pelvis atlas

Slide credit: Gouthami Chintalapani
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Training Sample Size

Vertex-Vertex Correspondence Errors
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Surface residual error using 18 modes for different sample 
set sizes

20 dataset atlas 40 dataset atlas

60 dataset atlas 80 dataset atlas

0mm 3mm 6.5mm

Slide credit: Gouthami Chintalapani
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Stability Analysis – Mean Shape

Slide credit: Gouthami Chintalapani
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Shape Atlas Mesh Refinement

• Note that the methods described so far all assume that 
the vertices of the mesh after deformable registration all 
correspond to each other

• This is often not the case
• Also, some image segmentation methods we would like to 

use do not always produce the same surface mesh
• Is there anything we can do???

Mesh Vertex Improvement
(click here)

• Yes: The basic idea is to do deformable registration of statistical model 
vertices to the surface(s) to find corresponding points, and then iterate.

70

Engineering Research Center for Computer Integrated Surgical Systems and TechnologyCopyright 2022 R. H. Taylor

Deformable registration between density atlas and a set of 
2D X-Rays

• Goal: Register and Deform the statistical density atlas to match 
intraoperative x-rays

• Significance:
– Build virtual patient specific CT without real patient CT 
– Register pre-operative models and intra-operative images
– Map predefined surgical procedure and anatomical landmarks 

into intra-operative images

Jianhua Yao
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2D/3D Registration – Shape and Intensity Models

[1] Sadowsky, O., Chintalapani, G., Taylor, R.H., MICCAI 2007; 
[2] Chintalapani et al. PMMIA/MICCAI 2009

Slide credit: Gouthami Chintalapani

90

Engineering Research Center for Computer Integrated Surgical Systems and TechnologyCopyright 2022 R. H. Taylor

2D/3D Registration – Shape and Intensity

Avg surface registration accuracy: 2.21mm
Avg. reduction in RMS errors intensity: 27%

Table 1: Residual errors from leave-out-validation tests of the
augmented registration algorithm. Column 2 shows the
surface distance after 2D/3D shape registration. Columns 3
shows residual errors when using mean density only and
column 4 shows residual errors with mean density and
density modes. The % reduction in RMS error between
columns 3 and 4 is given in Column 5

Slide credit: Gouthami Chintalapani
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2D/3D Registration – Hip Model

• Problem: To create patient specific models 
using atlas
– single organ atlases are insufficient 

• Our approach: Develop a multi-component 
atlas
– Use hip atlas instead of a pelvis or femur atlas
– Extend atlas building framework to 

incorporate hip joint
– Extend the registration framework to 

incorporate articulated hip joint

• Results
– Multi-component atlas registration is 

accurate compared to individual organ atlas

Pelvis atlas registered to hip projection 
images

Hip atlas registered to hip projection 
images
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1. Two components – pelvis and femur
2. Create mesh instances of pelvis and femur separately
3. Align pelvis and femur meshes together
4. Align pelvis meshes
5. Align femur meshes
6. Concatenate pelvis and femur meshes
7. PCA on the concatenated mesh

Multi-Component Atlas

Combined Rigid+Scale Separate Rigid Combined Statistical Analysis

Slide credit: Gouthami Chintalapani

93



11/8/22

37

Engineering Research Center for Computer Integrated Surgical Systems and TechnologyCopyright 2022 R. H. Taylor

Multi-Component Hip Atlas

[1] Chintalapani et al. CAOS 2009

PC1 PC2 PC3

Slide credit: Gouthami Chintalapani
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2D/3D Registration – Hip Model

2D/3D deformable registration

• Registration with truncated 
images
– FOV: 160mm
– Three views

• Avg surface registration accuracy: 
2.15 mm

Atlas projections overlaid on DRR images after 
registration

Chintalapani et al. CAOS 2009
Slide credit: Gouthami Chintalapani
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Applications – Hip Osteotomy

Slide credit: Gouthami Chintalapani
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Background
• Hip dysplasia:

– Malformation of the hip (normally a ball and socket joint)
– Significant cause of osteoarthritis, especially in young adults

• Surgery goals:
– Reduce pain symptoms
– Realign joint to contain the femoral head
– Diminish risk for degenerative joint changes
– Improve contact pressure distribution

• Periacetabular Osteotomy (PAO):
– Maintains pelvic structural stability
– Preserves viable vascular supply
– Technically challenging tool placement and realignment procedure

• Limitations of current navigation systems:
– Lack the ability to track bone fragment alignment
– Do not provide anatomical measurements
– Omit biomechanical-based planning and guidance
– Ignore the risk of reducing joint range-of-motion

Hip Dysplasia 

Anatomical measurements used to 
diagnose hip dysplasia

Slide credit: Gouthami Chintalapani, Mehran Armand
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Biomechanical Guidance System (BGS)
• BGS Preoperatively:

– Plans surgical cuts
– Optimizes contact pressures and joint realignment
– Calculates anatomical-based angles that are 

meaningful to the surgical team

• BGS Intraoperatively:
– Tracks surgical tools and bone fragment alignment
– Computes resulting contact pressures
– Calculates hip range-of-motion
– Visualizes the surgical cuts
– Displays radiation-free Digitally Reconstructed 

Radiographs (DRR)

Camera

Patient
Contact Pressures

BGS

Model to Patient 
Registration Hip-range-of-motion

Joint contact-pressure after  PAO

Slide credit: Gouthami Chintalapani, Mehran Armand
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Atlas Based Extrapolation of CT

• Problem: Partial CT scans of patients
– Dose minimization for young female patients
– But the BGS needs full pelvis CT for planning

• My approach: Use atlas to predict the missing 
data
– Robust probabilistic atlases
– Improve prediction using pre-op and intra-op

x-ray images

• Preliminary Results
– Comparable to the registration errors from full CT 

scans

Typical pre-operative CT scan of a 
dysplastic patient undergoing 
osteotomy  

Distribution of surface registration 
errors of a patient pelvis model 
estimated from partial CT scan

Chintalapani et al. SPIE 2010

Slide credit: Gouthami Chintalapani
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Atlas Adaptation to Partial Data

Chintalapani et al. SPIE 2010

Slide credit: Gouthami Chintalapani

      

Given a statistical shape model with mean S  and modes U = {U (1)...U (M ) }
Rearrange vertex indices and partition model into components corresponding
to known and unknown parts

S =
SI

SJ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
   U =

UI

U j

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

Find a set of registration parameters (s,R,
!
p,
!
λ)

(s,R,
!
p,
!
λ) = argmin SJ

(obs)− sR SJ +UJ

!
λ( )+

!
p( )

Estimate the total shape as

S(est ) =
sR SI +UI

!
λ( )+

!
p( )

SJ
(obs)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Atlas Adaptation to Partial Data with Xray Images

Chintalapani et al. SPIE 2010

Ø 2D/3D registration[2] of inferred data with X-ray images

Ø Final atlas extrapolated model is given as 

Slide credit: Gouthami Chintalapani

      
s,R, 

!
p,
!
λ( ) = argmax MI(Ik ,DRR(DensityAtlas,sR SJ +UJ

!
λ( )+

!
p)

k∑ )

      

S(est ) =
sR SI +UI

!
λ( )+

!
p( )

SJ
(obs)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Results

Slide credit: Gouthami Chintalapani
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Results – Atlas Experiments

Atlas inferred CT using full 
CT scan

Atlas extrapolated CT using 
partial CT scan

Atlas extrapolated CT using 
partial CT scan and X-ray 
images

Chintalapani et al. SPIE 2010

Slide credit: Gouthami Chintalapani
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Results – Atlas Experiments

Distribution of surface errors between atlas extrapolated models and the true CT 
model 

Inferred CT from full 
CT scan

True CT scan

Extrapolated CT from 
partial CT scan

Extrapolated CT from 
partial CT scan and X-
ray images

Chintalapani et al. SPIE 2010 Slide credit: Gouthami Chintalapani, Mehran Armand
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Cut-and-Paste Model Completion

Ground truth shape

Shape derived from 
projected modes

Observed parts  of 
shape
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Model Completion with Thin Plate Spline

Ground truth shape

Shape derived from 
projected modes

Observed parts  of 
shape

Overlap Region
(correspondences)

TPS 
extrapolation

R. B. Grupp, H. Chiang, Y. Otake, R. J. Murphy, C. R. Gordon, M. Armand, and R. H. Taylor, "Smooth 
extrapolation of unknown anatomy via statistical shape models", in Proc. SPIE 9415, Medical Imaging 
2015: Image-Guided Procedures, Robotic Interventions, and Modeling, San Francisco, 8-10 Feb., 2015.  
p. 941524. 10.1117/12.2081310 
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Smooth extrapolation 
using only acetabulum 
scan

Smooth extrapolation 
using only acetabulum 
scan + 5% of iliac crest

Naïve cut-and-paste  
extrapolation using only 
acetabulum scan + 5% of 
iliac crest

Model Completion of Pelvis from Partial CT Only
R. Grupp, R. Taylor, et al., CAOS 2015

R. Grupp, Y. Otake, R. Murphy, J. Parvizi, M. Armand, and R. Taylor, "Pelvis surface estimation from partial CT for computer-
aided pelvic osteotomies," in Computer Assisted Orthopaedic Surgery, Vancouver, June 17-19, 2015..  
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Osteotomy Simulations

Ø Atlas extrapolated model is used primarily for two reasons:
1. Model to patient registration

– simulation experiments
– six leave out experiments 
– FRE error metric

2. Fragment tracking
– Simulated osteotomy cuts
– Applied known transformation to the 
– Fragment
– Computed the fragment transformation 
– Compared it to the known transformation

Slide credit: Gouthami Chintalapani, Mehran Armand
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Statistical Assessment of ACL Tunnel Positions
Xin Kang, Russell Taylor, Yoshito Otake, Wai-Pan Yau
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Basic Approach: Contour-based deformable 2D-3D 
registration

      

E-Step :  Estimate pmn  from current R,
!
t, !α, where

pmn =  probability that projected model contour 
element m matches image contour element n

     

M-Step (Pose) :
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Otake, Wai-Pan Yau
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Basic Approach: Contour-based deformable 2D-3D 
registration

      

E-Step :  Estimate pmn  from current R,
!
t, !α, where

pmn =  probability that projected model contour 
element m matches image contour element n

     

M-Step (Pose) :

R,
!
t⎡

⎣⎢
⎤
⎦⎥
= argmin pmn

m,n
∑

!
xn−T(

!
Xm;R,

!
t)

      

M-Step (Shape) :
!
α= argmin ρ dmn

2

m,n
∑ + (1−ρ)

αk
2

λkk
∑

where

dmn = pmn

!
Vn

!
Cn− R

!
Xm

(0) +
!
t + R

!
em

(k )

k
∑

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Xin Kang, Russell Taylor, Yoshito 

Otake, Wai-Pan Yau

115



11/8/22

46

Engineering Research Center for Computer Integrated Surgical Systems and TechnologyCopyright 2022 R. H. Taylor

Basic Approach: Contour-based deformable 2D-3D 
registration

      

E-Step :  Estimate pmn  from current R,
!
t, !α, where

pmn =  probability that projected model contour 
element m matches image contour element n
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Xin Kang, Russell Taylor, Yoshito 
Otake, Wai-Pan Yau
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C-arm Distortion
ØWhat is distortion ?

–Avg distortion: 2.14 mm/pixel 
–max distortion: 4.60 mm/pixel

ØHow to rectify images ?
ØPhantom based correction
ØPolynomial functions to model distortion Example C-arm images showing 

distortion, straight metal wires appear 
curved due to distortion

Typical bi-planar phantom used for C-arm 
calibration

Slide credit: Gouthami Chintalapani
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C-Arm Distortion Correction

Warped X-ray image of the phantom Dewarped X-ray image

Distortion vector map
Slide credit: Gouthami Chintalapani
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Statistical Characterization of C-Arm 
Distortion correction using PCA

Ø Principal component analysis on distortion maps
Ø 120 images, one every 3 degrees approx., along propeller axis (similar to
the full sweep data used for 3D reconstruction)

Ø 200 images to span the sphere defined by the “C” of the c-arm

Slide credit: Gouthami Chintalapani
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Circular Trajectory

mode3mean mode1 mode2

Distortion patterns from PCA modes

Lambda_1 Lambda_2 Lambda_3

Slide credit: Gouthami Chintalapani
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C-arm Imaging Volume

mode4mode1 mode2 mode3

Lambda_1 Lambda_2 Lambda_3 Lambda_4

Slide credit: Gouthami Chintalapani
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Eigen Analysis of Distortion Maps

Ø First three modes are significant and explain 99% of the variation
Ø Leave-out validation tests indicate that the distortion parameters can be

recovered with an accuracy of less than 0.1 mm/pixel.

Slide credit: Gouthami Chintalapani
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Sampling Resolution

Circular Trajectory C-arm Imaging Volume

• How many images are required to statistically characterize 
the distortion patterns ?

Slide credit: Gouthami Chintalapani
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Recovering Distortion Parameters

• Use as few beads as possible to recover the distortion mode 
parameters

Circular Arc C-arm Imaging Volume

Slide credit: Gouthami Chintalapani
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Small Phantom based Distortion Correction

Example patient image 
peripheral beads

Prior distortion model

Distortion 
mode 
matching

Distortion corrected image

Avg. residual error: 0.2mm/pixel
Max. residual error: 0.8mm/pixel

Chintalapani et al. SPIE 2007

Peripheral bead 
locations

Distortion 
modes

Slide credit: Gouthami Chintalapani
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Small Phantom based Distortion 
Correction

 

(a) (b)

(d)

(c)(c)

(e)
 

Fig. 2 (Left) Residual Error in distortion vs number of points used for distortion correction.  

Fig.2. (Right) Results from simulation experiments using simpler phantom. (a) Knee X-ray image with phantom 
BBs overlaid in red color (b) distortion corrected image with dense grid pattern phantom  (c) (b) – (a) with 
distortion vectors overlaid in red (d) distortion corrected image with using BBs in (a) and PCA  (e) (b) – (d) with 
the residual distortion vectors overlaid in red 

Statistical Characterization of C-arm Distortion with Intra-operative Application
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Using Patient CT as Fiducial

Patient C-Arm images 
with distortion

Prior CT

Prior distortion model

2D/3D Registration

Distortion mode 
matching

Registered 
Drrs

Distortion corrected images

Avg. residual error: 0.5mm/pixel

Chintalapani et al. ISBI 2007 Slide credit: Gouthami Chintalapani

127



11/8/22

52

Engineering Research Center for Computer Integrated Surgical Systems and TechnologyCopyright 2022 R. H. Taylor

C-Arm Distortion Correction Using Patient 
CT as Fiducial

Rigid
2D/3D

Optimize 
modes

Distortion
Statistics

Registered Patient CT

Intra-operative C-Arm

C-Arm images with 
distortion

Initialization

Patient CT

CT Projections (DRRs)

Distortion Corrected 
C-Arm images

Iterative Step

Thanks to Ofri Sadowsky for assistance with 2D/3D registration

Slide credit: Gouthami Chintalapani
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C-Arm Distortion Correction Using Patient 
CT as Fiducial

Results from simulation experiments. (a) true projection; (b) warped projection (simulated x-ray); (c) 
difference between true and warped projection ((a) - (b)); (d) registered and distortion corrected 
projection; (f) (a) - (d); The bottom row shows the distortion map before and after correction.

Slide credit: Gouthami Chintalapani
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