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Deformable Registration

Im(x) Im(®(p,X))
* Many different ways to parameterize the deformation function
* Typically some version of a spline or radial basis function
* One desirable (though not universal) property: diffeomorphism
* Afunction @ is diffeomorphic if @is bijective and both ® and @ are smooth

Images: Tom Fletcher
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Deformable Registration

Compare images
and update 7 Deformation parameters v

. 0) =N
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology B

Deformable Registration from Point Cloud Matches

Suppose that we have a bunch of corresponding point locations between an
initial shape and a deformed shape. How can we use these point matches to
compute a general deformation?

Images: Tom Fletcher

Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology ©
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Deformable warping from point cloud matches

* One answer would be the deformable Coherent Point
Drift algorithm (Myronenko & Song, IEEE PAMI, 2010)

* Another answer might make use of what we learned in
programming assignments

— E.g., fit Bernstein or B-spline polynomials to determine distortion.
u= TrimToBox()?)
= (u,)B;(u,)B,(u,)
or

=38 NN N, @)

x

— Note: In this case, the coefficients will also parameterize the
“Shape”

Copyright 2022 R. H. Taylor
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Radial Basis Functions

Given a scalar function ¢(+) and a set of sample points 5k with
associated deformations Elk, one can represent the deformation ®

at a point X by
o(%)=Y",d,6, (%5, )

* Many possible functions to use for ¢

* Common choices include Gaussians and “thin plate splines”, which have
non-compact support (i.e., ®(y)>0 for arbitrarily large y)

* Others have compact support (i.e., ®(y)=0 for |y|> some value)*

* See: M. Fornefett, K. Rohr, and H. S. Stiehl, "Radial basis functions with compact support for elastic
registration of medical images", Image and Vision Computing, vol. 19- 1,Ai2, pp. 87-96, 2001.
http:/www.sciencedirect.com/science/article/pii/S0262885600000573
http:/dx.doi.org/10.1016/S0262-8856(00)00057-3

Copyright 2022 R. H. Taylor
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Thin Plate Splines
* Minimum energy spline deformations

TPS(V;aB,CP)=a+Bev+y SU(N-p))
where U(r)=r? Iog(r) for 2D images

* Global support
* Popularized by Fred Bookstein for analysis of anatomic
variation

— F. L. Bookstein, Morphometric tools for landmark data, Geometry and
biology: Cambridge University Press, 1991.

X 0 EN
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology @
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Thin Plate Splines Digression

« Some citations (from G. Donato and S. Belongie, “Approximation Methods
for Thin Plate Spline Mappings and Principal Warps”, 2002;

http://www.cs.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2003-0764 )

[1] C.T.H. Baker. The memenical irsamen: of incegral equeagons. Oxfond: Clarendon Press, 1977,
[2]1 S.Belongie, J, Mallik, and I, Puzicha, Matching shapes, In Proac, 8¢ B’ Conf, Comypuirer Visioo, volume |, pages 454=461, July 201,
[3] F L. Booksiein, Principal warps: thin<plate splines and decompesition of deformations. [TEEE T, Pafere Analysis aned Macline
Inselligence, | 1GGnSGT-585, Tune 1989,
H. Chai and A, Rangaragan. A new algorithm [or non-rigid poiné madching, In Procs [EEE Confe Campus, Vision and Parsem Recogiigon,
Pages 44=5 1, June 2000,
[5]1 MLH. Davis, A, Khetanzad, D. Flamig, and S. Harms. A physics-bosed ooondinate tsnsformation for 3-J image mauching. [EEE Trans.
Medieal Imaging, 16(33:317=328, Junc 1997,
[6] F.Ginsi, M. Jones, and T. Poggio. Regullarization theary and neural networks anchitectures, Newnl Compueiarion, W 2p219=260, 1995,
[7] M. I, D, Powell, A thin plate spline method for mapping curves indoe curves in two dimensions,  [n Compuranional Teclovaues and
Applicarions (CTACYS ), Mclbourng, Ausiralia, 1995,
[8] AJ. Smwki and B. Schedlkond. Sparse greedy matrix approximation for machine karning. In /CML, 2000,
[ G, Wahbxw, Splfre Moddel's for Observadional Daias STAM, 19950,
[10] Y. Weiss, Smoothmess in Rryers: Motion Segmentation using nonparametnic mixture estineion. InPae TEEE Conf, Comp. Vision and
Pavierm Recognidion, pages 520526, 1997.
(111 €. Williams and M. Seeger, Using the Nysintim method (© speed up kernell machines, Tn T, K. Leen, T, G, Dietterich, and V. Tresp, editors,
Advances in Newval Informarion Processing Syssems 13 Proceedings of the 2000 Conference, puges G82-688, 2001,

=
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M-dimensional Thin Plate Spline Summary
Given

TPS(V;aB,CP)=a+Bev+y SU(N-p|)
where
U(ry=r? Iog(r) for 2D
=r?lo g(rz) for 3D

. T
V=[vvy)
> T
pi = [p'l’“.’pML

o o 9T Note: Some sources give
P:[p1’...’pN] \
r*"in(r) form=2or4
_lg P u(r)=
C= [61,---,CN] { rém otherwise
B=|b,b,]
Copyright 2022 R. H. Taylor ineeri O

Engineering Research Center for Computer Integrated Surgical Systems and Technology m.,
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M-dimensional Thin Plate Spline Fitting

Given

V=[V, v,] F

find a, B,C such that
f=TPS(v; a B,CV)

To do this, solve the linear system

K[NxN] 1[N><1] v CT F7
LIV 0 a |=| 0
i 0O 0 B’ 0[M><1]

where

K, =K, = U(‘ ‘\7,. —\7/”) with U(r) = r®logr or U(r)=r?logr?
K, =(

3, )o(v, -, Jog [V, ¥, )e(v, )|

Copyright 2022 R. H. Taylor
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TPS 2D case

Given a set of points B, = [x,,y, | and corresponding points B,* =[x*y, *|,
we want to find TPS parameters such that p,* = TPS(p,;a,B,C,P)
To do this, we solve the least squares problem

0 U1,k U1,N 1 XY, 31 [31 *

U. o :
ij
Uk,1 0 LJk,N 1 Xk yk : pk
U. : :
ij ° g |1=le «

UN,1 UN,k 0 1 XN yN _,N pN

1 1 1 00 o [2] |0

X x, - x, 00 0f[P |0

y1 yk yN O O O by 0
where U, =U, =U(|B, - B,|)

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -{
12
M-dimensional Thin Plate Spline Fitting
Define
K[NxN] 1[N><1] v
L[M+N+1><M+N+1] = 1[1><N] 0 0
Vv’ 0 0.,

If there are many points, this matrix may be expensive to
invert or even pseudo-invert. There are various methods
to deal with this problem. These include

e Use a random sample of the \71. to approximate the solution

e Use a random sample of the basis functions & all data
to solve problem in least squares sense
e Use matrix approximation methods

See
http://www.cs.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2003-0764
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -55-
13



Other Radial Basis Functions

Note that the function U(r) in the previous discussion is a

an example of a more general class of "radial basis functions".

These functions can be used in deformable registration in much the same
way as the TPS function used above. Other commonly used radial

basis functions include

Ury=(r*+c?y forpeRr
U(ry=(r*+c*" forpeR
U(e) — e—r2/2rr2

The last one is probably the most popular for global support. There
are also radial basis functions with "compact" support. For example*®

* See: M. Fornefett, K. Rohr, and H. S. Stiehl,
k+1+|d/2 "Radial basis functions with compact support for
r . elastic registration of medical images", Image
|[’] — —J ifo<r<o and Vision Computing, vol. 19- 1,Ai2, pp. 87-96,
- - 2001.
http://www.sciencedirect.com/science/article/pii/
. S0262885600000573
0 otherwise http://dx.doi.org/10.1016/S0262-8856(00)00057-
3

W(r,o)= o

Copyright 2022 R. H. Taylor
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Deformable Registration to Statistical “Atlases”

Deformable 3D/3D Deformable 2D/3D
Jianhua Yao Ofri Sadowsky

Copyright 2022 R. H. Taylor
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Deformable Altas-based Registration

¢ Much of the material that follows is derived from the Ph.D. thesis work of
J. Yao, Ofri Sadowsky, and Gouthami Chintalapani:

— J. Yao, “Statistical bone density atlases and deformable medical image registrations”, Ph.
D. Thesis, Computer Science, The Johns Hopkins University, Baltimore, 2001.
— O. Sadowsky, "Image Registration and Hybrid Volume Reconstruction of Bone

Anatomy Using a Statistical Shape Atlas,” Ph.D. Thesis, Computer Science, The
Johns Hopkins University, Baltimore, 2008

— G. Chintalapani, Statistical Atlases of Bone Anatomy and Their Applications, Ph.D. thesis
in Computer Science, The Johns Hopkins University, Baltimore, Maryland, 2010.
* A number of other authors, including
— Cootes et al. 1999 — “Active Appearance Models”
— Feldmar and Ayache 1994
— Ferrant et al. 1999
— Fleute and Lavallee 1999
— Lowe 1991
— Maurer et al. 1996
— Shen and Davatzikos 2000

. 0) =N
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology B
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What is a “Statistical Atlas” ?

* An atlas that incorporates statistics of anatomical shape and
intensity variations of a given population

Credit: G. Chintalapani 2010

) )=
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology @
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Statistical Atlases

Shape distribution

CT scans from a population

Intensity distribution

Slide Credit: G. Chintalapani 2010

Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology m., B 'y'
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Statistical models

* The next few slides will review the use of the Singular Value
Decomposition (SVD) in constructing statistical shape models.

* There is a close relationship between this material and the
“principal components analysis” (PCA) methods you may have
encountered in a statistics class.

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m)

19

11/8/22



Principal Components Analysis (PCA)

Suppose that you have a set of N vectors 5,. in an M dimensional space?
Is there a natural "coordinate system" for these vectors?

20

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m., B 'y'

Principal Components Analysis (PCA)

We proceed as follows

—

a@o — 2% b _3 _3. =[p
N I I

Then form the singular value decomposition

—

1’.“bN ;

»v)

B=UXV' =U V" where 2" = diag(o,,+,0,)

Then we note that BB =UX?U’. Of course U is huge, but we have the
following useful fact. We note that

21

01
[ P S = T_[o .. g [styT — gMsinyT
B* u11 1uN1uN+1a ’uM O-N V *{u,], 'uN]E V 7U E V
. ;
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬂb
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Principal Components Analysis (PCA)

This means that any column Bkof B may be expressed as a linear
combination of the first N columns of U

B= [61,-~-,GN]Z‘N)VT =yzmv’
b, = AU, + -+ AW, = UMA®
where
A® = transpose(U‘N))Bk
So
a, =a® +b, =a® + A\ +-+ 2V,
But often the last few values of the )\, are small
the first D values, we have

. If we ignore all but

a ~a@9 L \Og ... WG
a, ~a™ +\"u 4+ AU,

Copyright 2022 R. H. Taylor
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Principal Components Analysis (PCA)
uppose now that we have an arbitra 5 . e can
S that we h bit @) W
approximate a“®® as follows: .
a(arb)
B(arb) — glem) _ z@v9)
A®®) = transpose(U® )b ‘;
alad)  a(avg) (arb) 3 . (arb)ry |
a ~a +/\1 u, + +>\D u, i
/ 3(@pprox)
Copyright 2022 R. H. Taylor Engineering Research Center for Compur Integrated Surgical Systems and Technology -55-
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Statistical Atlases & PCA

- = a7 . . .
Given a set of N models X% = [xk(“] = [~~-Xk(”,yk“),zk(”,~--], compute

> o o 1 o .
X9 =1x @9 where X, = N E X, and the differences
. ]

DV =X¥ —X®9 =|d " |where d,"”) =X, —x,*9). Create the matrix

- - -
™ ) Q]
®» .. d® . d
D:[... Dy ... = 40 . 49w .. 4w
[3Nvertices><N] k k k
a M ... a G) - A (N)
Nvertices Nvertices Nvertices
) o =
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology m.,
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Statistical Atlases & PCA

Compute the singular value decomposition of D

D=UxV’ where ¥ = diag()
0
D_U diag(a)V’
0
Note that
1 T 1 T T 1 2yT
D'D= VU UV =—VXV

N -1 N -1 N—

1 1 1

DD’ = UsVvV'vsu = ——uxU’
N -1 N-1

Copyright 2022 R. H. Taylor

= |
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Statistical Atlases & PCA

Any individual model DY can be written as a linear combination of the

columns of U. Treating DY) as a column vector, we can write this as

)\1(1') /\1(1)
—()) : : P
D =Ue| ° where | | is the " column of diag(c)V
)\(]) A(l) 0
N N
0 0
If we define
M=| U" ... UM | (ie., the first N columns of U)
we get the expression
—()) o - " T
D =M\ where X is the " column of (dlag(a)V )
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -{
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Statistical Atlases & PCA

Note that while U is 3N

vertices

x 3N

vertices

(i.e., huge), M has only the first
N columns, since there are at most N non-zero singular values

In fact, we usually also truncate even more, only saving columns
corresponding to relatively large singular values o, . Since the standard
algorithms for SVD produce positive singular values o, sorted in descending
order, this is easy to do.

Note also, that since the columns of M are also columns of U, they are

orthogonal. Hence MM But MM” = C will be an

= IN><N'

3N x3N____ matrix that will not in general be diagonal.
vertices vertices
o =
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Statistical Atlases & PCA
As a practical matter, it is not a good idea to ask your SVD program
to produce the full matrix U for an 3N, .. x N matrix D. Many SVD
packages give you the option to compute only the singular values &
and the right hand side matrix V or its transpose. Then, M can be
computed from
Mdiag(5)V" =D
Mdiag(c) =DV
M = DVdiag(c)

rtices

g, 0 - o 0
o . :
o,V 10,
: .0
0 - - 0 1o,
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -E
28
Statistical Atlases & PCA
Similarly, given a vector D" we can find
a corresponding vector A™! from the following
B(inst) -M )‘\’(inst)
MTﬁ(inst) _ MTM)_\'(inst)
_ )‘\’(fnsz)
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -55-
29
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Statistical Atlases & PCA

Suppose that we select X = [)\1,~--,>\N]T as a random variable with some
distribution having expected value E()_() =0 and covariance

EOY) - EQW)
cov(\)=E(XeX)=| L=
ENA) - EONA)
and compute a corresponding random model )?( X)
X (V) =X Me X
What can we say about the expected value and covariance of i( X )?

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m., B 'y'
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Statistical Atlases & PCA

For the expected value, we have
E(X(\)) = E(X®9 + Me X)
X9 L Mo E(R) = X + M0

_ 59)
Then
cov(X(\)) = E(D(\)eD(\)') where D(})=X(\)— X9
—E(MeXe)” oM)
=MeE(Xe X )oMT
=MeX?eM’
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -55-
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Statistical Atlases & PCA
Thus, if we assemble a representative sample set of models X', and

compute the average model X and the

SVD of the corresponding matrix D = [-~-()2“7 - i(avg)) , then

we have a way of generating an arbitrary number of models
y (inst) _y¢(avg) Y (inst) —yr(avg) \(K) Y (inst)
X=X M =X @9+ " MEN,

with the same mean and covariance. l.e., we know how the
individual features x, "™ co-vary.

inst)

Further, given a representative model instance X" we can
compute a corresponding set of mode weights XY from

X(inst) _ MT i(inst) o i(avg)

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m., B 'y'
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Statistical Atlas

Thus, one representation of a statistical "atlas" of models consists of
o An average model X9
¢ An eigen matrix M of variation modes
e A diagonal covariance matrix $? for the modes

This information may be used in many ways, including
o Atlas-based deformable segmentation/registration
o Statistical analysis of anatomic variation
e efc.

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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template image

Statistical Atlas Construction

Training database of medical images

7 ]

b l

1 . .
L l" Points, landmarks, meshes, parametric
models, level sets

Model Representation/Parameterization

T ]

Y L

l

Parameterized representation of medical
images

2. Model Correspondence/Alignment

Rigid, affine, deformable registration
methods

|
S
|

Aligned images in correspondence to the
template

3. Statistical Analysis

PCA, ICA, Kernel PCA, non-

slide Credit: G. Chintalapani 2010 (j

Copyright 2022 R. H. Taylor

linear statistical methods

Statistical model/atlas

Engineering Center for Ct

34

0) =N
Surgical Systems and Technology BN

[1] Analyze, www.mayoclinic.org
[2] Mohammed et al., 2005

Slide Credit: G. Chintalapani 2010

Copyright 2022 R. H. Taylor

Model Creation

Mesher[2]

Surface rendering of pelvis tetrahedral model; Cross-section of tetrahedral
model showing CT densities

Engineering Center for C

35

0N
Surgical Systems and Technology
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Model Representation

» Tetrahedral mesh represents shape

» Bernstein polynomials approximate CT density within each

tetrahedron[1,2]
U,
P'(w)= Y G,B{ (u)
[k|=d
where
k= (ky, k. ky ky) u= (uo’uu”z,”s)
K| =ky+h +k,+k, Ju|=1 Uy u,
B (0)=———urububub
() [RTATATS o Uy Uy Uy u,
» Alternative is to use voxels directly after deformation to
mean shape
[1] Yao, PhD Thesis, 2002; [2] Sadowsky, PhD Thesis, 2008 Credit: 6. Chintalanaai2d10
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology py

36

Model Correspondence

* Need to establish a common coordinate frame for the training

database

* Need to establish point correspondence between the training
datasets

Slide Credit: G. Chintalapani 2010

) 0N
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology $

37

11/8/22

18



Model Shape Correspondences

* Automatic deformable registration based shape correspondences

Template
Template [ Mesher Mesh
cr

Mesh
Instances
for training
data sets

Deformation
Field

3D/3D
registration

Warped
Training Volumes
cT

Data sets

Flowchart for establishing shape correspondences for the training sample

Slide Credit: G. Chintalapani 2010

) =X
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Fh&rRAkgyt e@w
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Model Intensity Correspondences

e Automatic deformable registration based correspondences

Template
Template | Mesher Mesh
cT
Polynomial
Shape-Free Fit Coefficients (C)
Warped CT Polynomial for training
CT data sets
3D/3D
registration
Deformation
Training Field
cT
Data sets

Flowchart for establishing intensity correspondences for the training sample

) 0)
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology %
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Shape Statistics: Principal Component Analysis

* Given N mesh instances of training sample, create matrix of the vertices

X X - - Xy
Yo Y - - v
- k[] g k\,{ TR 7Y
= P 34 = )q/
3nXN A
B . 7
Y Yu2 o+ o L
S IR Y

¢ Compute mean and subtract the mean from the sample

_ 1N -
*  Compute -32373:87—5 S,
N

SVD(S) =UDV" A= pp
With principal components in U and eigen values

¢ Alternative: compute SVD of deformation field

Slide Credit: G. Chintalapani 2010

Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology m., B 'y'

40

Principal Component Analysis

* Given the PCA model, any data instance can be expressed as a
linear combination of the principal components

N-1
s +ZUk/Ik
k=1 >

* Compact model - fewer components

* Select first ‘d’ components represented by the ‘d’ eigen values

Slide Credit: G. Chintalapani 2010

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬂb
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Statistical Shape and Intensity Models
* Shape statistical model: Mesh vertices become data matrix

d
5+ UL =5+U"2

k=1

* Intensity statistical model: Polynomial coefficients become
data matrix

P
c +2kak =c+Y'u

k=1

Slide Credit: G. Chintalapani 2010
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m.,
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Deformable Registration Between Shape/Density
Atlas and Patient CT

* Goal: Register and Deform the statistical density atlas to
match patient anatomy
* Significance:
— Building patient specific model with same topology (mesh
structure) as the atlas
— Automatic segmentation
— Accumulatively building models for training set
— Pathological diagnosis

Jianhua Yao

: Y
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgficib Systeints @\ Figsnel aayi nta)ﬁpahf
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Typical pipeline for atlas-assisted registration/registration

Instance of atlas

Statistical
Atlas
—— Deformable model
\. @ / fitting to atlas

-/

Deformable
registration of
model to image

Deformed
instance
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology -ﬁ-
44
Deformable model fitting
Statistical
Atlas A
Optimization
T Process
&) Y . -
A p* = argminE(Im,,0(s,Im,)
p=I0.07i]
1 LI
\ 4 7
. 1
Predicted I
Create IR e Image |
Instance 1
- 1
@(p 7') 1
1
4 I
| 1
1
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -55-
45
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Deformable Registration Scheme

* Affine Transformation

— Translation T=(t,, t, t,)

— Rotation R=(r,, r,, 1)

— Scale S=(s,, s, s;)  [Similarity if s,=5,=5)]
* Global Deformation

— Statistical deformation mode (M)
* Local Deformation

— Adjustment of every vertex

Jianhua Yao

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -{
46
Optimization Algorithm
* Direction Set (Powell’s) method in multi-dimensions
— Search the parameter space to minimize the cost functions
— Advantage
* Don’t need to compute derivative of cost functions
* Much fewer evaluations than downhill simplex methods
* Alternatives
— Downhill Simplex (similar advantages)
— Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
method (similar advantages)
— Levenberg-Marquardt (requires computing gradients)
— Many others
Jianhua Yao g =X
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
47
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Local Deformation

* Motivation: Statistical deformation can’t capture all the variability due
to the limited number of models in the training set

* Locally adjust the location of vertices to match the boundary of the
bone and the interior density properties

* Use multiple-layer flexible mesh template matching to find the
correspondence between model vertices and image voxels

* Apply radial basis function (or other scheme) based on vertex-to-voxel
location matches

Jianhua Yao
Copyright 2022 R. H. Taylor ineeri ) )
pyrigl Yl Engineering Center for Ct Surgical Systems and Technology S

50

Multiple-layer Flexible Mesh Template

» Each vertex on the model defines a
mesh template

« Template is in the form

Jianhua Yao 0=
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology %
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Template matching

For each pixel location 7(0 :
Place v, at X,
For each neighbor v,
Find the X, near v, that minimizes E(X,,V,)
Score (X,) = E(X,.V,)+ Y w,E(X,.V,)
Pick the X with the best score

Copyright 2022 R. H. Taylor Engineering h Center for C

Surgical Systems and Technology -ﬁ

52

Template matching

For each pixel location X, :
Place v, at X,
For each neighbor v,
Find the X, near v, that minimizes E(X,,V,)
Score (X,) = E(X,.V,)+ Y, w,E(X,.V,)
Pick the X with the best score

Copyright 2022 R. H. Taylor Engineering Center for Ct

Surgical Systems and Technology @
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Template matching

For each pixel location 7(0 :
Place v, at X,
For each neighbor v,
Find the X, near v, that minimizes E(X,,V,)
Score (X,) = E(X,.V,)+ Y w,E(X,.V,)
Pick the X with the best score

Score = 4.6 (fow/k =0"2)

Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology -ﬁ

Template matching

For each pixel location X, :
Place v, at X,
For each neighbor v,
Find the X, near v, that minimizes E(X,,V,)
Score (X,) = E(X,.V,)+ Y, w,E(X,.V,)
Pick the X with the best score

Score = 3.2 (fowk =0"2)

-

: ) EN
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology @

55

26



11/8/22

Results (Affine Transformation)

Initial Intermediate Final

Jianhua Yao
Copyright 2022 R. H. Taylor ineer N ) y =
pyrig| Y| Engineering Center for Cq Surgical Systems and Technology m., B 'y'
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Results (Global Deformation)

Initial Intermediate Final

Jianhua Yao g =X
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬂb
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Results (Local Deformation)

Initial Intermediate Final

Jianhua Yao

: 4N =Y
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology m’ B 'y'
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Deformable Atlas-to-CT Registration (3D-3D)

Jianhua Yao

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m)
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Results (Deformable Registration)

100

Deformable Atlas/CT Registration
1

1
Affine Gldbal Deform

Lodal Deform
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Energy Function

30

s

20

S

10 -
0

%—““ﬁ

Jianhua Yao

Copyright 2022 R. H. Taylor
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Initial Atlas

=

Training datasets

Copyright 2022 R. H. Taylor

Iterative “bootstrapping” of Atlas

Bootstrapping loop

Updated
Atlas

—>

Mesh instances and
warped volumes

Atlas

Chintalapani et al. MICCAI 2007
Slide cre€nginGetinaaseakivtenigrfar Computer Integrated Surgical Systems and

0)
Technology

61
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Leave-Out Validation Experiments

7 T T T T

Vertex-Vertex Distance = iteration1
(mm) —+ iteration2
=+ iteration3
= iteration4
= iteration5

e # of iterations: 5

e # of data sets: 110 5

e # of data sets in atlas: 90

* # of data sets left out: 20 » . ‘ . .
0 20 40 60 80 10(
. Given a |eft_0ut dataset’ Sj Number of principal components included in the model

compute the estimated shape from 3 : —
. Surface-Surface Distance :f‘era'fm“
atlaS USIng iteration2

25 (mm) —+— iteration3 ||
——iteration4
A=U"(s,—5)
¢ = S+UA

= iteration5
1

)

[¢] 20 40 60

Copyri N er of principal c on| nts8 9 é‘iﬁ
opyright 2022 R. H. Taylor Slide creéfginzeting 8aseasiviatspfar Computer Integr;{murglcaf’gy?telgs anf‘ﬂa‘a\naFogy
62
Distribution of Surface Registration Errors
Iteration 1
Iteration 3
Iteration 5
Copyright 2022 R. H. Taylor Slide creEngingexng Baseasivansgrdar C Surgical Systems and Technology %
63
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Choice of Initial Template

* Claim:
— iterative method does not depend on the choice of template
* Criteria:
— Mean shape converges
— Modes exhibit similar deformation patterns
* Experimental setup:
— Three random templates
— Atlases with and without bootstrapping compared
* Result

— All three atlases exhibit similar deformation patterns after
bootstrapping

) o=
Copyright 2022 R. H. Taylor Slide crekngirgenna Brseamivarigrdar Computer Integrated Surgical Systems and Technology -5 SN
64
Average Difference between Atlases 1,2 and 3
Mean 9Imm
Mean + Mode 1
4.5mm
Mean + Mode 2
Mean + Mode 3 ---0mm
Before iteration After iteration
. o) =N
Copyright 2022 R. H. Taylor SlidiaeineerinaResrprshienienfarfiommuter Integrated Surgical Systems and Technology % BN
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Training Sample Size

* Goal:

statistical atlas
* Criteria:
— Atlas is stable
— No significant improvement in residual error
* Experimental setup:
— Varying sample size 20, 40, 60, 80
— Leave-20-out validation test

e Result:

Copyright 2022 R. H. Taylor Slide crekfei o b 'ﬁﬁﬁﬁdﬁf C

— Minimum of 50 data sets are required for pelvis atlas

3 ==
Surgical Systems and Technology m., B 'y'

— To determine the size of the training sample to build a stable

66

Training Sample Size

6.5 . . — ; ; ;
‘ ] ] ‘ ] 20
6r Vertex-Vertex Correspondence Errors 28 ]
. 507
€
£ 60 |
< —70
= —80
[0 -
= 90
>
° _
N
[0]
1
3 |- -
2 X 5 1 1 1 1 1 1 L 1
0 10 20 30 40 50 60 70 80 90
Number of principal components
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬁ)
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Surface residual error using 18 modes for different sample
set sizes

80 dataset atlas

Omm 3mm 6.5mm
) T =N
Copyright 2022 R. H. Taylor Slide crekngingering Baseaisivienigrfar Computer Integrated Surgical Systems and Technology SRy
Stability Analysis — Mean Shape
Training sample size
4
3
2
1
0
Mean shape comparitive study
1 T T

E ——iteration1

Eos ferat! §

puy —+—ijteration5

2 :
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=
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g 04
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20 40 60 80 100
Training sample size -
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Shape Atlas Mesh Refinement

* Note that the methods described so far all assume that
the vertices of the mesh after deformable registration all
correspond to each other

¢ This is often not the case

* Also, some image segmentation methods we would like to
use do not always produce the same surface mesh

* |s there anything we can do???

e Yes: The basic idea is to do deformable registration of statistical model
vertices to the surface(s) to find corresponding points, and then iterate.

Mesh Vertex Improvement

(click here)
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -{
70
Deformable registration between density atlas and a set of
2D X-Rays
* Goal: Register and Deform the statistical density atlas to match
intraoperative x-rays
* Significance:
— Build virtual patient specific CT without real patient CT
— Register pre-operative models and intra-operative images
— Map predefined surgical procedure and anatomical landmarks
into intra-operative images
Jianhua Y:
Copvfiag:t ;:223':”- Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology -55-
87
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Miccai_2011_TALK_Sharmi.pptx

2D/3D Registration — Shape and Intensity Models

Shape statistical model Intensity statistical model (PCA on voxel

on mesh vertices, values and polynomials fit to modes
PCA h verti | d pol ials fit t d
S0 {Sk} CO {Cky}
Deformable .
2D/3D Registered Atlas R;Zits'q‘,zt:
Registration Projections (Com ulttle )
(Estimate A®) pute p
Patient X-ray images T Registered Atlas
or DRRs Projections
SO + TAkSK
[1] Sadowsky, O., Chintalapani, G., Taylor, R.H., MICCAI 2007; CO+Z pkCk
[2] Chintalapani et al. PMMIA/MICCAI 2009
=
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Suglicib Ststeins &T&Mnﬁlmm;{m
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2D/3D Registration — Shape and Intensity

[OINC) 3) (4) (5)
Strue_ RMS ( RMS( A
St Ve ViRtan) [VIUe | Vitaes )|((3)-(4))/(3)|  Avg surface registration accuracy: 2.21mm
# Avg. reduction in RMS errors intensity: 27%
(mm) (HU) (HU) %
1| 1.94 109.92 58.88 46.43
2 | 1.62 128.32 96.0 25.19
3 | 1.90 98.4 77.12 21.63
4 | 2.60 51.68 41.6 19.50
5| 248 109.44 84.8 22.51
6 | 1.95 73.44 50.56 31.15
71 2.30 72.96 47.52 34.84
8 | 293 101.28 85.76 15.32
avg| 2.21 93.18 67.78 27.07

Table 1: Residual errors from leave-out-validation tests of the
augmented registration algorithm. Column 2 shows the
surface distance after 2D/3D shape registration. Columns 3
shows residual errors when using mean density only and
column 4 shows residual errors with mean density and
density modes. The % reduction in RMS error between
columns 3 and 4 is given in Column 5

Slide credit: Gouthami Chintalapani

Copyright 2022 R. H. Taylor )
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2D/3D Registration — Hip Model

* Problem: To create patient specific models
using atlas

— single organ atlases are insufficient

* Our approach: Develop a multi-component
atlas

— Use hip atlas instead of a pelvis or femur atlas Ppelvis atlas registered to hip projection

— Extend atlas building framework to images
incorporate hip joint

— Extend the registration framework to
incorporate articulated hip joint

* Results

— Multi-component atlas registration is
accurate compared to individual organ atlas

Hip atlas registered to hip projection
images

Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology -ﬁ Y
92
Multi-Component Atlas

1. Two components — pelvis and femur

2. Create mesh instances of pelvis and femur separately

3. Align pelvis and femur meshes together

4. Align pelvis meshes

5. Align femur meshes

6. Concatenate pelvis and femur meshes

7. PCA on the concatenated mesh

Combined Rigid+Scale Separate Rigid Combined Statistical Analysis

Copyright 2022 R. H. Taylor Slide credit: Gagthamttisdaianediter for Computer Integrated Surgical Systems and Technology @
93
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Multi-Component Hip Atlas

Lh| AR

PC1 PC2 PC3
[1] Chintala pa ni et al. CAOS 2009 Slide credit: Gouthami Chintalapani
. 4. ==
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m., sr
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2D/3D Registration — Hip Model

* Registration with truncated
images
— FOV: 160mm
— Three views

* Avg surface registration accuracy:
2.15 mm

2D/3D deformable registration
registration

Chintalapani et al. CAOS 2009
Slide credit: Gouthami Chintalapani-!-

.
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, ﬁf
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Applications — Hip Osteotomy

) 0N
Copyright 2022 R. H. Taylor Slide credit: Egingaing Researsturnipr for Computer Integrated Surgical Systems and Technology -%-

Background

*  Hip dysplasia:
— Malformation of the hip (normally a ball and socket joint)
— Significant cause of osteoarthritis, especially in young adults

e Surgery goals:
— Reduce pain symptoms
— Realign joint to contain the femoral head
— Diminish risk for degenerative joint changes
— Improve contact pressure distribution

*  Periacetabular Osteotomy (PAO):
— Maintains pelvic structural stability
— Preserves viable vascular supply
— Technically challenging tool placement and realignment proce|

* Limitations of current navigation systems:
— Lack the ability to track bone fragment alignment
— Do not provide anatomical measurements
— Omit biomechanical-based planning and guidance

— Ignore the risk of reducing joint range-of-motion - N
Anatomical measurements used to

diagnose hip dysplasia

Slide credit: Gouthami Chintalapani, Mehran Armand

) 0N
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology %
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*  BGS Preoperatively:
— Plans surgical cuts
— Optimizes contact pressures and joint realignment

— Calculates anatomical-based angles that are
meaningful to the surgical team

*  BGS Intraoperatively:
— Tracks surgical tools and bone fragment alignment
— Computes resulting contact pressures
— Calculates hip range-of-motion
— Visualizes the surgical cuts

-
— Displays radiation-free Digitally Reconstructed Contact Pressures
Radiographs (DRR)

Biomechanical Guidance System (BGS)

&

A
Model to Patient Joint contact-pressure after PAO
Registration Hip-range-of-motion
Slide credit: Gouthami Chintalapani, Mehran Armand
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology -ﬁ
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scans

Copyright 2022 R. H. Taylor

— Dose minimization for young female patients
— But the BGS needs full pelvis CT for planning

* Preliminary Results
— Comparable to the registration errors from full CT

Atlas Based Extrapolation of CT

* Problem: Partial CT scans of patients

. X . P Typical pre-operative CT scan of a
My approach: Use atlas to predict the missing dysplastic patient undergoing
data osteotomy

— Robust probabilistic atlases
— Improve prediction using pre-op and intra-op
X-ray images

Distribution of surface registration

errors of a patient pelvis model
estimated from partial CT scan

Chintalapani et al. SPIE 2010

Slide credit: Goutbami Rbisdalm pamter for C Surgical Systems and Technology %
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Atlas Adaptation to Partial Data

Given a statistical shape model with mean S and modes U = {U".. U™}
Rearrange vertex indices and partition model into components corresponding
to known and unknown parts

§ _ N U _ J Missing
SJ Uj Observed
Find a set of registration parameters (s,R,ﬁ,X )
(s,R,p,\)=arg minHSJ(""S’ - (sR (§J + UJX) - 5)”
Estimate the total shape as
S(est) _ (SR (SI + UIA) + p)
S (obs)
J Chintalapani et al. SPIE 2010
Copyright 2022 R. H. Taylor Slide credit: Gaigthesnh&histalapasiter for Computer Integrated Surgical Systems and Technology %
100
Atlas Adaptation to Partial Data with Xray Images
Missing
» 2D/3D registration[2] of inferred data with X-ray images Opsenved
(s,R, P ) — argmax > Mi(l,,DRR(DensityAtlas,sR (§J +UN ) +P))
» Final atlas extrapolated model is given as
S(est) _ (SR (SI + UIA) + p)
(obs)
SJ
Chintalapani et al. SPIE 2010
Copyright 2022 R. H. Taylor slide credit: @,mﬁ“mmer for Computer Integrated Surgical Systems and Technology $
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Results

Leave-Out Validation of Partial Data Extrapolation - B
3 T T T r T r T . -

Residual Error (mm)
N

1 | 1 i 1 | i
0 10 20 30 40 50 60
Number of Principal Components

_ . ‘ o ) W=
Copyright 2022 R. H. Taylor Slide creditedamiathmgr&sRintaleqnsi for Computer Integrated Surgical Systems and Technology -ﬁ
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Results — Atlas Experiments

Full CT Partial CT Partial CT + X-ray
7 mean | max | std | 95% || mean | max | std | 95% | mean | max | std | 95%
1 1.41 | 820 | 1.06|3.45| 1.97 | 14.06 | 1.69 | 5.17 || 1.37 | 10.94 | 1.13 | 3.54
2 1.88 | 725 | 1.42 471 | 2.15 | 12.25|1.73 | 528 | 1.73 | 14.78 | 1.71 | 4.51
3 1.55 | 7.72 | 1.20 | 3.77 | 2.45 | 11.33]12.08|6.89 | 1.41 | 6.81 | 1.10 | 3.54
4 1.32 | 5.77 | 1.01 327 | 1.69 | 9.06 | 1.43 | 4.58 | 1.21 | 6.80 | 1.03 | 3.27
5 1.72 | 829 | 1.17|3.79 | 1.62 | 6.87 | 1.24|3.93| 1.36 | 8.17 | 1.13| 3.61
6 | 1.69 |10.58 | 1.55]4.78 || 2.64 | 14.87 | 227 | 7.18 | 1.71 | 11.33 | 1.54 | 5.06
avg | 59 | 7,96 | 1.23 [3.96/| 2.08 |11.40 | 1.74 | 5.50 |1.46 9.80 | 1.27 | 3.92

! l l

Atlas inferred CT using full Atlas extrapolated CT using Atlas extrapolated CT using
CT scan partial CT scan partial CT scan and X-ray
images
Chintalapani et al. SPIE 2010

. )N
Copyright 2022 R. H. Taylor Slide credit: B8 i s for C Surgical Systems and Technology @
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Results — Atlas Experiments
Inferred CT from full 6mm
CT scan

True CT scan

Extrapolated CT from

artial CT scan
P 3mm

Extrapolated CT from
partial CT scan and X-
ray images ||
.--0mm

Distribution of surface errors between atlas extrapolated models and the true CT
model

Chintalapani et al. SPIE 2010 Slide credit: Gouthami Chintalapani, Mehran Armand

: 0=
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology S
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Cut-and-Paste Model Completion

Shape derived from
projected modes

Observed parts of Ground truth shape
shape

) 0N
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology %

105

11/8/22

42



Model Completion with Thin Plate Spline

Overlap Region

Shape derived from
(correspondences)

projected modes

—-_—m—-——_
-

y. TPS
extrapolation
Observed parts of Ground truth shape

shape

R. B. Grupp, H. Chiang, Y. Otake, R. J. Murphy, C. R. Gordon, M. Armand, and R. H. Taylor, "Smooth
extrapolation of unknown anatomy via statistical shape models", in Proc. SPIE 9415, Medical Imaging
2015: Image-Guided Procedures, Robotic Interventions, and Modeling, San Francisco, 8-10 Feb., 2015.
p. 941524. 10.1117/12.2081310

. 0) =N
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology B
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Model Completion of Pelvis from Partial CT Only
R. Grupp, R. Taylor, et al., CAOS 2015

Smooth extrapolation
using only acetabulum
scan

Smooth extrapolation
using only acetabulum
scan + 5% of iliac crest

Naive cut-and-paste
extrapolation using only
acetabulum scan + 5% of
iliac crest

R. Grupp, Y. Otake, R. Murphy, J. Parvizi, M. Armand, and R. Taylor, "Pelvis surface estimation from partial CT for computer-
aided pelvic osteotomies," in Computer Assisted Orthopaedic Surgery, Vancouver, June 17-19, 2015..

) 0N
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology %
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1. Model to patient registration
—  simulation experiments
—  six leave out experiments
—  FRE error metric

2. Fragment tracking
—  Simulated osteotomy cuts
—  Applied known transformation to the
—  Fragment
—  Computed the fragment transformation
—  Compared it to the known transformation

Slide credit: Gouthami Chintalapani, Mehran Armand
Copyright 2022 R. H. Taylor Engineering Center for Ct

Osteotomy Simulations

» Atlas extrapolated model is used primarily for two reasons:

.
~
>
/
S~

0) =N
Surgical Systems and Technology

108

Statistical Assessment of ACL Tunnel Positions
Xin Kang, Russell Taylor, Yoshito Otake, Wai-Pan Yau

Knee atlas/CT
] k
| |
' l
: |
: .
' q :
. I 3D-2D
registration

¥ {)

Tunnel position
Post-op X-rays

estimation in 3D

projection

s

2D measure 3D measurel

Copyright 2022 R. H. Taylor Engineering Center for C

0)
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Basic Approach: Contour-based deformable 2D-3D
registration

M-Step (Pose):
> [R tl = argmanp ~T(X_R, t)"
M-Step (Shape):
2
a=argminpy a2 +(1— p)Z)\—k
m,n k

“| where

, |~ 0) k
Xin Kang, Russell Taylor, Yoshito dm,, = “ pm,, Vn 'Cn RX( ZRe(m)]
k

Otake, Wai-Pan Yau

. 0=
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology S

Basic Approach: Contour-based deformable 2D-3D
registration

| W
I (__________..
| | '/ M-Step (Pose): |
I |_|' [R tl—argmanpmn ~T(X_R, t)" i
| e
I | |M-Step (Shape):
2
o . 2 «
| | a=argminpy d? +(1—p)zk:)\—“
| [N o «
where
Rl |
Xin Kang, Russell Taylor, Yoshito “\’ ,,m V RX(0)+t+ZRe(k)]
Otake, Wai-Pan Yau
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology @
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Basic Approach: Contour-based deformable 2D-3D
registration

BN

# of iteration - Arg min Z pmn
mn

Max err (mm)

X — T()"(m;R,E)"

=
1032 750 663 617 533 498 464 395 381 329 3.02

i : ]
; M-Step (Shape): !
I o’ !
Ia=argminpy d?> +(1-p)> & ]
I T oA 1
| I—
| Where 1
I 1
Xin Kang, Russell Taylor, Yoshito : dm,, = “\j Pm,, V,, C,, - [RX(O) +t+ ZRe(k)] :
Otake, Wai-Pan Yau I k 1
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology -ﬁ-
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C-arm Distortion

»What is distortion ?
—Avg distortion: 2.14 mm/pixel
—max distortion: 4.60 mm/pixel

»How to rectify images ?
»Phantom based correction =
» Polynomial functions to model distortion Example C-arm images showing

distortion, straight metal wires appear
curved due to distortion

ozC

n n
(U, va) = E g CijBi;(ug, vo)
i=0 j=0
Typical bi-planar phantom used for C-arm
calibration
Slide credit: Gouthami Chintalapani
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology @
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C-Arm Distortion Correction

Warped X-ray image of the phantom Dewarped X-ray image

.
Ad = (Du, Av) = (ug, vq) — (uo, vo)

Distortion vector map

Slide credit: Gouthami Chintalapani TN =
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology -§
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Statistical Characterization of C-Arm
Distortion correction using PCA

»  Principal component analysis on distortion maps
> 120 images, one every 3 degrees approx., along propeller axis (similar to
the full sweep data used for 3D reconstruction)

> 200 images to span the sphere defined by the “C” of the c-arm

Reconstruction Error Plot for Leave-out Validation Test

o
o

Percentage Variation Explained by Principal Modes
* K—k—k

X* 3 —*Video

R —#—Dicom
\

e
]

—>%—Video | |
| == Dicom

>

n

=~

o 2 o o 2 o

Percentage Variation Explained
N @
s 3
B
Reconstruction Error (mm)

\(§ s x
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 01 2 3 4 5 6 7 8 9 101112 13 14 15
Number of Principal Modes Number of Principal Modes

Slide credit: Gouthami Chintalapani

) 0N
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Circular Trajectory

Cliiirrsrrss?
Leessrsrtts
Ll

IS4

mean model

Distortion patterns from PCA modes

Lambda,
°

0 20 40 80 100 120

60
Image #

Lambda_1

Copyright 2022 R. H. Taylor

0 o0 |m:£e, g 10 120 -2 20 40 60 80 100 120

Image #
Lambda_2 Lambda_3

Slide credit: Gouthami Chintalapani
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rm Imaging Volume
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Lambda,

Copyright 2022 R. H. Taylor

.
Rwen—
T

Slide credit: Gouthami Chintalapani
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Engineering Research Center for Computer Integrated Surgical Systems and Technology

121

11/8/22

48



Copyright 2022 R. H. Taylor

Eigen Analysis of Distortion Maps

»  First three modes are significant and explain 99% of the variation
» Leave-out validation tests indicate that the distortion parameters can be
recovered with an accuracy of less than 0.1 mm/pixel.

Reconstruction Error Plot for Leave-out Validation Test

Percentage Variation Explained by Principal Modes 0.

100 v * * KKK 07 F’ —*—Video
2w / “Video| | E |2k Dicom
s —¥—Dicom £06
2 d
< 80 5 05
5 504
5 70 4 g
i 503
> 60 c
£ 802
3 P2
5 S0px 01

% 5

40 H 0 I ¥ L c.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 01 2 3 4 5 6 7 8 9 1011 12 13 14 15
Number of Principal Modes Number of Principal Modes

2

€= ‘ Ad - (M._—. +iA,D;)

i=1

Slide credit: Gouthami Chintalapani
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Error (mm/pixel)

Copyright 2022 R. H. Taylor

Sampling Resolution

* How many images are required to statistically characterize
the distortion patterns ?

0.12
01 1 025 ,
0.08F 1
3 02 4
X
a
0.06- 1 B
E 4
£ 0.15
0.04F -
o 01 M 4
0.02F 4
el ]
[
3 6 9 12 15 18 21 30
Sampling Resolution — Angular separation between the images (degrees) 0 250 115 77 58 46 33 23 16 12
Number of Images Used
Circular Trajectory C-arm Imaging Volume

Slide credit: Gouthami Chintalapani

= |
Engineering Research Center for Computer Integrated Surgical Systems and Technology m)

123

11/8/22

49



parameters

Recovering Distortion Parameters

* Use as few beads as possible to recover the distortion mode

Circular Arc

Copyright 2022 R. H. Taylor

02 05
——RMS ——FMS
95% 04 95%
5018 \‘A —+— max = \o—o—v:max
o [
3 203 1
E o 1 £
5 502
W o.05 I I I I 1 u 04 I I I I I
I 1 T 1711
% 0 15 20 25 50 75 100 % s 520 25 50 75 100

10
Number of beads used for recovering distortion parameters

5 10
Number of beads used for recovering distortion parameters

C-arm Imaging Volume

Slide credit: Gouthami Chintalapani
il
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Example patient image
peripheral beads

Small Phantom based Distortion Correction

Distortion corrected image  «

Peripheral bead \
locations

Distortion
mode
matching

Distortion
modes

Prior distortion model

Copyright 2022 R. H. Taylor  Chintalapani et al. SPIE 2007

Avg. residual error: 0.2mm/pixel
Max. residual error: 0.8mm/pixel
Slide credit: Gouthami Chintalapani

Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬂb
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Correction

Small Phantom based Distortion
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Fig. 2 (Left) Residual Error in distortion vs number of points used for distortion correction.

Fig.2. (Right) Results from simulation experiments using simpler phantom. (a) Knee X-ray image with phantom
BBs overlaid in red color (b) distortion corrected image with dense grid pattern phantom (c) (b) — (a) with
distortion vectors overlaid in red (d) distortion corrected image with using BBs in (a) and PCA (e) (b) — (d) with

overlaid in red
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Patient C-Arm images

Using Patient CT as Fiducial

> 2D/3D Registration

with distortion

Prior CT

Registered
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Distortion mode

Prior distortion model
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Avg. residual error: 0.5mm/pixel

Slide credit: Gouthami Chintalapani
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C-Arm Distortion Correction Using Patient
CT as Fiducial

Distortion Corrected

C-Arm images with C-Arm images

distortion

Intra-operative C-Arm

Initialization CT Projections (DRRs)
Rigid
2D/3D
Registered Patient CT
Patient CT
Iterative Step
Thanks to Ofri Sadowsky for assistance with 2D/3D registration
Slide credit: Gouthami Chintalapani 0 =
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C-Arm Distortion Correction Using Patient
CT as Fiducial

Results from simulation experiments. (a) true projection; (b) warped projection (simulated x-ray); (c)
difference between true and warped projection ((a) - (b)); (d) registered and distortion corrected
projection; (f) (a) - (d); The bottom row shows the distortion map before and after correction.

Slide credit: Gouthami Chintalapani
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