

$$\begin{split} \textbf{H-dimensional Thin Plate Spline Fitting}\\ \text{Given}\\ & \mathcal{V} = \begin{bmatrix} \vec{v}_1, \cdots, \vec{v}_N \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} \vec{f}_1, \cdots, \vec{f}_N \end{bmatrix}\\ \text{find } \vec{a}, \ \mathbf{B}, \ \mathbf{C} \ \text{ such that}\\ & \vec{f}_j = \mathcal{TPS}(\vec{v}_j; \ \vec{a}, \ \mathbf{B}, \ \mathbf{C}, \ \mathbf{V})\\ \text{To do this, solve the linear system}\\ & \begin{bmatrix} \mathbf{K}_{[NLN]} & \vec{f}_{[N+1]} & \mathbf{V}\\ & \vec{f}_{[1 \le M]} & \mathbf{0} & \mathbf{0}\\ & \mathbf{V}^T & \mathbf{0} & \mathbf{0}_{[M \times M]} \end{bmatrix} \begin{bmatrix} \mathbf{C}_1^T\\ & \vec{a}_T^T\\ & \vec{a}_T^T \end{bmatrix} = \begin{bmatrix} \mathbf{F}_1^T\\ & \mathbf{0}\\ & \mathbf{0}_{[M \times 1]} \end{bmatrix}\\ \end{split}$$
where $\begin{aligned} \mathbf{K}_{i,j} = \begin{bmatrix} \mathbf{K}_{j,j} = \mathcal{U}(\| \vec{\mathbf{v}}_i - \vec{\mathbf{v}}_j \| \|) & \text{with } \mathcal{U}(r) = r^2 \log r \text{ or } \mathcal{U}(r) = r^2 \log r^2\\ & \mathbf{K}_{i,j} = (\vec{v}_i - \vec{v}_j) \cdot (\vec{v}_i - \vec{v}_j) \log(\sqrt{(\vec{v}_i - \vec{v}_j) \cdot (\vec{v}_i - \vec{v}_j)}) \end{split}$

Statistical Atlases & PCA

Note that while **U** is $3N_{vertices} \times 3N_{vertices}$ (i.e., huge), **M** has only the first *N* columns, since there are at most *N* non-zero singular values

In fact, we usually also truncate even more, only saving columns corresponding to relatively large singular values σ_i . Since the standard algorithms for SVD produce positive singular values σ_i sorted in descending order, this is easy to do.

Note also, that since the columns of **M** are also columns of **U**, they are orthogonal. Hence $\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbf{I}_{N \times N}$. But $\mathbf{M}\mathbf{M}^{\mathsf{T}} = \mathbf{C}$ will be an $3N_{\mathsf{vertices}} \times 3N_{\mathsf{vertices}}$ matrix that will not in general be diagonal.

Engineering Research Center for Computer Integrated Surgical Systems and Technology

			Re	esult	s – At	las E	xper	ime	nts			
#	Full CT				Partial CT				Partial $CT + X$ -ray			
	mean	max	std	95%	mean	max	std	95%	mean	max	std	95%
1	1.41	8.20	1.06	3.45	1.97	14.06	1.69	5.17	1.37	10.94	1.13	3.54
2	1.88	7.25	1.42	4.71	2.15	12.25	1.73	5.28	1.73	14.78	1.71	4.51
3	1.55	7.72	1.20	3.77	2.45	11.33	2.08	6.89	1.41	6.81	1.10	3.54
4	1.32	5.77	1.01	3.27	1.69	9.06	1.43	4.58	1.21	6.80	1.03	3.27
5	1.72	8.29	1.17	3.79	1.62	6.87	1.24	3.93	1.36	8.17	1.13	3.61
6	1.69	10.58	1.55	4.78	2.64	14.87	2.27	7.18	1.71	11.33	1.54	5.06
avg	1.59	7.96	1.23	3.96	2.08	11.40	1.74	5.50	1.46	9.80	1.27	3.92
Atlas inferred CT using full Atlas extrapolated CT using CT scan partial CT scan partial CT scan and X-ray images												
Chinta	iapani et d	<i>I.</i> SPIE 201	10									

