

Computer-Integrated Surgery: Applications in Neurosurgery

Jose "Tito" Porras, MD Masaru Ishii, MD, PhD September 15, 2022

Disclosures

There are no financial or other conflicts of interest in relation to this presentation.

Outline

- Neurosurgery: An Overview
- History of Neurosurgery at Johns Hopkins
- Computer Integration to Modernize Neurosurgery
- Computer Integration to Improve Surgical Training

Outline

- Neurosurgery: An Overview
- History of Neurosurgery at Johns Hopkins
- Computer Integration to Modernize Neurosurgery
- Computer Integration to Improve Surgical Training

What is neurosurgery?

Medical specialty concerned with the surgical treatment of disorders which affect any portion of the nervous system including the brain, spinal cord, and peripheral nervous system.

Path to becoming a neurosurgeon

Neurosurgical Subspecialties

Tumor – Neuro-Oncology

- Comprehensive management of brain tumors.
- Awake surgery
- Electrophysiological mapping
- Laser-induced thermal therapy
- Gamma Knife radiosurgery

Tumor – Skull Base

Emphasis on tumors arising along base or floor of skull

- Transcranial microsurgical approaches
- Endoscopic endonasal surgery
- Transorbital surgery
- Endoscopic/exoscopic port surgery

Spine

Craniocervical, cervical, thoracic, lumbar, sacral spine

- Degenerative
- Trauma
- Congenital
- Tumor
- Infection/Inflammatory

Peripheral Nerve

Nerves outside the brain/spinal cord including brachial plexus

- Brachial plexus injuries
- Metabolic and other neuropathies
- Compression syndromes
- Inflammatory lesions
- Tumors
- Pain

Vascular - Open

- Aneurysms
- Arteriovenous malformations
- Cavernous malformations
- Fistulas
- Carotid stenosis
- Developmental

Vascular - Endovascular

Minimally invasive, access through peripheral arteries

- Aneurysms
- Arteriovenous malformations
- Cavernous malformations
- Fistulas
- Carotid stenosis
- Developmental
- Stroke

Pediatrics

- Congenital/Developmental
- Tumor
- Trauma
- Vascular

- Spine
- Functional
- Hydrocephalus
- Everything

Functional

Emphasis on restoring quality of life/neurological function

- Cognitive & neuropsychiatric
- Epilepsy
- Movement disorders
- Pain

Outline

- Neurosurgery: An Overview
- History of Neurosurgery at Johns Hopkins
- Computer Integration to Modernize Neurosurgery
- Computer Integration to Improve Surgical Training

1889 – Johns Hopkins Hospital founded

Harvey Cushing

1896 – Surgical assistant to William Halsted

1900-1901 - **Cushing** spends one year in Europe observing others and studying blood pressure in the context of brain compression.

- Halsted offers Cushing a full-time surgical position working in neurology and neurosurgery.

1911 - 1912: 87 neurosurgical cases completed by Harvey Cushing and his medical student assistant, Walter Dandy.

Walter Dandy

By **1919**, **Dandy** is established as Chief of Neurosurgery at Johns Hopkins.

Walter Dandy

Described treatment of hydrocephalus, pneumoencephalography, first aneurysm clipping

Earl Walker

1947 - succeeds **Dandy** as Chief of Neurosurgery

Credited with describing Dandy-Walker syndrome

Normal

Dandy-Walker Malformation

1973 – **Donlin Long** becomes first director of the Department of Neurosurgery.

Pioneer in electrostimulation for treatment of back pain.

Founded the Johns Hopkins Blaustein Chronic Pain Clinic.

2000 – Dr. Henry Brem succeeds **Dr. Long** as chair of the Department of Neurosurgery

Developed carmustine wafers (Gliadel) leading to significant increases in the median survival of patients with glioblastoma.

The Hunterian Laboratory

Established in **1895** by **Welch** and **Halsted**

Cushing appointed as laboratory head in **1904**

The Hunterian Laboratory

Thrived until **Walter Dandy's** death in **1946**

Resurrected in **1984** by **Dr. Brem**

The Hunterian Laboratory: Now

The Department of Neurosurgery: Now

Outline

- Neurosurgery: An Overview
- History of Neurosurgery at Johns Hopkins
- Computer Integration to Modernize Neurosurgery
- Computer Integration to Improve Surgical Training

If you needed to get to **center** of head for an operation, how would you get there?

Open Approach: Pterional Craniotomy

Open Approach: Pterional Craniotomy

Comira, Car. A.

Contra. M1

Contra, A1

G

Lam. Term.

Car. A.

A1

P. Co. A.

Pit. Stalk

M1

Drawbacks of Open Surgery

Wound healing, infection, neurological damage, etc

Alternative to an **open** approach?

Endonasal endoscopic removal of pituitary macroadenoma

is shown. The initial portion of the procedure involves removing bone at the

PACIFIC NEUROSCIENCE INSTITUTE®

Kerrison biting comes at the risk of poor visualization of neurovascular structures

How then is surgery safely performed around such high-stakes anatomy?

Surgical Navigation Systems

IGS Components

camera

pointer

computer

Ch.

reference frame

Surgical Navigation

Registration defines a correlation between a reference point in a 3D data set such as CT or MRI with the corresponding reference point in a patient.

Most navigation systems achieve **position errors on the** order of 2mm

- Vulnerable to physical displacement or computer malfunction
- Requires repeated visual confirmation of registration accuracy during surgery

Surgical Navigation

Surgical navigation systems display the same image information even as anatomy changes.

- Relationship between endoscopic view and navigation view is **lost** over time
- Intra-operative cone-beam or CT imaging is a way to **update** visualization
- BrainLab Brainsuite iCT
- Medtronic O-Arm system

Drawbacks of Intra-Operative CT

- Additional radiation,
 Inferior operative time, and costs.
 quality in the second se
 - Inferior reconstruction quality if using cone-beam.

Rationale for improving navigation

- Enhance patient safety and outcomes by reducing potential complications and radiation exposure
- Reduce costs by improving clinical workflow and clarity of intraoperative visualization

How then do we **improve navigation** during **endoscopic endonasal surgery**?

Proposal: Utilize images from the endoscope as a basis for registration to pre-operative imaging and reconstruction of anatomical surfaces.

Quantitative Endoscopy (QE)

- **Goal**: transform the endoscope from a visualization device to an instrument for quantitative 3D measurement.
- Endoscopic measurements combined with CT or MRI to provide:
- enhanced navigation (goal accuracy 0.5mm),
- tissue surface reconstruction,
- and fused image visualization.

Video-Based Navigation System Overview

Image features detected and matched in two temporally adjacent images.

These matching pairs are then used to estimate the camera motion using a robust estimator we have developed

Video-Based Navigation System Overview

Once the camera motion is estimated, the 3D location of the matched features are reconstructed.

The reconstructed 3D surface points are then passed to the 3D-3D registration component.

Target Registration Error (TRE)

TRE_{1}	Metric for evaluating pointer-based methods
TRE_2	Metric for evaluating tracker-based and video-based methods
NGE	Same as TRE_2 , however, the target is not visible in the endoscope image.

$$TRE_{1} = \left\| \mathbf{p}_{CT} - \begin{pmatrix} CT T_{Navigation} \end{pmatrix} \mathbf{p}_{pointer} \right\|$$

experimentation
$$TRE_{2} = \left\| \mathbf{p}_{CT} - \left(\mathbf{t} + \mathbf{r} \left(\frac{\mathbf{r} \cdot (\mathbf{p}_{CT} - \mathbf{t})}{\mathbf{r} \cdot \mathbf{r}} \right) \right) \right\|$$
 where $\mathbf{r} = RK^{-1}\mathbf{q}_{image} - \mathbf{t}$,

Key result: TREs using video-CT methods are measurably improved over traditional methods

Key result: tissue surfaces can be reconstructed in 3D using endoscope video.

Quantitative Endoscopy (QE)

Incorporation of computational vision algorithms with traditional navigation methods provides several benefits.

- Improves usability of existing navigation technology in sinus surgery with no additional cost or equipment.
- Minimal disruption to the surgical workflow.

Next Steps: Translation to Sinuses/Skull Base

- Aim #1: Develop video-CT registration algorithms that are accurate to CT resolution.
- Aim #2: Develop methods for surface shape estimation from endoscopic images.
- Aim #3: Perform comparative evaluation of video-CTbased navigation on patient data.
- Aim #4: Assess the accuracy and reliability of intraoperative surface estimation on patient data.

Sinus Reconstruction

Outline

- Neurosurgery: An Overview
- History of Neurosurgery at Johns Hopkins
- Computer Integration to Modernize Neurosurgery
- Computer Integration to Improve Surgical Training

Technology is also being leveraged to **improve traditional surgical methods** and our **training system**.

Surgical training translates to

- prolonged operative times,
- increased resource usage,
- and therefore, higher operating room costs.¹

In 2003, the ACGME mandated an 80-hour duty limit on residents.

This modernization required that surgeons be trained in fewer hours, and therefore more efficiently.

Surgical training is susceptible to bias

- Female trainees are more likely to receive negative assessments compared to males.²⁻⁵
- Bias may be an assumption of a resident's skill based on years of training.

The **Objective Structured Assessment of Technical Skills (OSATS)** is a proposed solution for bias.⁶

Time and motion			
1 2	3	4	5
Highly tentative, unsure of movements	Efficient, but somewhat tentative, with some unnecessary moves	Clear econon and ma	ny of movements ximum efficiency
Needle Insertion and bite sizes			
Needle Insertion and bite sizes	3	4	5
Needle Insertion and bite sizes12Inappropriate needle positioning	3 Generally appropriate	4 Appropriate	5 needle angle and
Needle Insertion and bite sizes12Inappropriate needle positioningand bite sizes resulting in poor	3 Generally appropriate techniques with some room for	4 Appropriate size and distar	5 needle angle and nce of bites every

 The OSATS is dependent on the presence of examiners, and thus prone to subjectivity.⁷

Advances in Modern Surgical Training

Artificial intelligence models of surgical ability have successfully measured:

- task completion time,
- motion smoothness,
- positioning/angling,
- bleeding amount,
- and kinematics such as applied force, speed, or acceleration.¹⁰⁻¹²

Advances in Modern Surgical Training

AI can assess skill level in surgical video with **overall accuracy between 92.75 and 100%** depending on the observed task.^{13,14}

ML algorithms can also **match human expertise** in providing objective assessments of surgical skill.^{10,15–18}

 Al may also be used to predict surgical resident performance to help tailor training for at-risk residents.^{19,20}

The most common method for determining operative skill level through ML methods has been retrospective, videobased assessment.

To date, there has **not been an intra-operative use** of ML to provide real-time feedback for neurosurgeons.

Our aim is to **standardize** and optimize neurosurgical resident education by utilizing machine learning to provide both real-time and longitudinal, non-biased feedback.

Aim 1: Define a "gold standard" for craniotomy performance through review of intraoperative point-of-view video.

Aim 2: Develop a deep learning algorithm that compares trainee to attending performance during a craniotomy.

Aim 3: Assess the impact of real-time feedback on trainee performance in a cadaveric model of craniotomy.

Aim 4: Prospectively compare the impact of and bias within resident, attending, and AI feedback on resident performance.

- **Aim 2**: Develop a deep learning algorithm that compares trainee to attending performance during a craniotomy.
- **Aim 3**: Assess the impact of real-time feedback on trainee performance in a cadaveric model of craniotomy.
- **Aim 4**: Prospectively compare the impact of and bias within resident, attending, and AI feedback on resident performance.

Aim 1: Define a "gold standard" for craniotomy performance through review of intraoperative point-of-view video.

Aim 2: Develop a deep learning algorithm that compares trainee to attending performance during a craniotomy.

Aim 3: Assess the impact of real-time feedback on trainee performance in a cadaveric model of craniotomy.

Aim 4: Prospectively compare the impact of and bias within resident, attending, and AI feedback on resident performance.

Aim 2: Develop a deep learning algorithm that compares trainee to attending performance during a craniotomy.

Aim 1: Define a "gold standard" for craniotomy performance through review of intraoperative point-of-view video.

Aim 2: Develop a deep learning algorithm that compares trainee to attending performance during a craniotomy.

Aim 3: Assess the impact of real-time feedback on trainee performance in a cadaveric model of craniotomy.

Aim 4: Prospectively compare the impact of and bias within resident, attending, and AI feedback on resident performance.

Aim 3: Assess the impact of real-time feedback on trainee performance in a cadaveric model of craniotomy.

Aim 1: Define a "gold standard" for craniotomy performance through review of intraoperative point-of-view video.

Aim 2: Develop a deep learning algorithm that compares trainee to attending performance during a craniotomy.

Aim 3: Assess the impact of real-time feedback on trainee performance in a cadaveric model of craniotomy.

Aim 4: Prospectively compare the impact of and bias within self, attending, and AI feedback on resident performance.

Aim 4: Prospectively compare the impact of and bias within resident, attending, and AI feedback on resident performance.

Mentorship/Collaboration

Gary Gallia, MD, PhD

Judy Huang, MD

Masaru Ishii, MD, PhD

Henry Brem, MD

Mathias Unberath, PhD

Russell Taylor, PhD

Questions?

Additional References

- Babineau TJ, Becker J, Gibbons G, et al. The "cost" of operative training for surgical residents. Arch Surg. 2004;139(4):366-369; discussion 369-370.
- 2. Barnes KL, McGuire L, Dunivan G, Sussman AL, McKee R. Gender Bias Experiences of Female Surgical Trainees. Journal of Surgical Education. 2019;76(6):e1-e14. doi:10.1016/j.jsurg.2019.07.024
- **3.** Barnes KL, Dunivan G, Sussman AL, McGuire L, McKee R. Barnes KL, Dunivan G, Sussman AL, INCOMEND, 2021:S1931720421002560. Behind the Mask: An Exploratory Assessment of Female Conder Bias Academic 9. Oquendo YA, Riddle EW, Hiller D, Blinman TA, Medicine. 2020;95(10):1529-1538.
- **4.** Gerull KM, Loe M, Seiler K, McAllister J, Salles A. Assessing gender bias in qualitative evaluations of surgical residents. The American Journal of Surgery. 2019;217(2):306-313.
- 5. Khan S, Kirubarajan A, Shamsheri T, Clayton A, Mehta G. Gender bias in reference letters for residency and academic medicine: a systematic review. Postgrad Med **11**. Watson RA. Use of a Machine Learning Algorithm to J. Published online June 2, 2021:postgradmedi-2021-140045.
- **6.** Szasz P. Louridas M, Harris KA, Aggarwal R, Grantcharov TP. Assessing Technical Competence in Surgical Trainees: A Systematic Review. Annals of Surgery. 2015;261(6):1046-1055.
- . Goff BA, Nielsen PE, Lentz GM, et al. Surgical skills assessment: A blinded examination of obstetrics and gynecology residents. American Journal of Obstetrics

and Gynecology. 2002;186(4):613-617. Patel VL, Shortliffe EH, Stefanelli M, et al. The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine. 2009;46(1):5-17.

- 8. Kirubarajan A, Young D, Khan S, Crasto N, Sobel M, Sussman D. Artificial Intelligence and Surgical Education: **15**. Nguyen XA, Ljuhar D, Pacilli M, Nataraja RM, Chauhan A Systematic Scoping Review of Interventions. Journal of Surgical Education. Published online October
 - Kuchenbecker KJ. Automatically rating trainee skill at a pediatric laparoscopic suturing task. Surg Endosc. 2018;32(4):1840-1857.
- **10.** Fard MJ, Ameri S, Darin Ellis R, Chinnam RB, Pandya AK, Klein MD. Automated robot-assisted surgical skill evaluation: Predictive analytics approach. Int J Med Robotics Comput Assist Surg. 2018;14(1):e1850.
 - Classify Expertise: Analysis of Hand Motion Patterns During a Simulated Surgical Task. Academic Medicine. 2014;89(8):1163-1167.
- 12. Anh NX, Nataraja RM, Chauhan S. Towards near realtime assessment of surgical skills: A comparison of feature extraction techniques. Computer Methods and Programs in Biomedicine. 2020;187:105234.
- 13.Funke I, Mees ST, Weitz J, Speidel S. Video-based surgical skill assessment using 3D convolutional neural

networks. Int J CARS. 2019;14(7):1217-1225.

- **14.** Azari DP, Frasier LL, Quamme SRP, et al. Modeling Surgical Technical Skill Using Expert Assessment for Automated Computer Rating. Annals of Surgery. 2019;269(3):574-581.
 - S. Surgical skill levels: Classification and analysis using deep neural network model and motion signals. Computer Methods and Programs in Biomedicine. 2019;177:1-8.
- 16. Kumar R, Jog A, Malpani A, et al. Assessing system operation skills in robotic surgery trainees. Int J Med *Robotics Comput Assist Surg.* 2012;8(1):118-124. doi:10.1002/rcs.449
- 17.Bissonnette V, Mirchi N, Ledwos N, et al. Artificial Intelligence Distinguishes Surgical Training Levels in a Virtual Reality Spinal Task. The Journal of Bone and Joint
- Surgery. 2019;101(23):e127. 18.Gao Y, Yan P, Kruger U, et al. Functional Brain Imaging Reliably Predicts Bimanual Motor Skill Performance in a Standardized Surgical Task. IEEE Trans Biomed Eng. 2021;68(7):2058-2066.
- **19.**Yost MJ, Gardner J, Bell RM, et al. Predicting Academic Performance in Surgical Training. Journal of Surgical Education. 2015;72(3):491-499.

