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What is neurosurgery?

Medical specialty concerned 
with the surgical treatment 
of disorders which affect any 

portion of the nervous 
system including 
the brain, spinal 

cord, and peripheral nervous 
system.



Path to becoming a neurosurgeon

College

4-5 years

MCAT

Medical School

4-5 years

USMLE Step 1, 2

Neurosurgery Residency

7 years

Written Boards

+/- Fellowship



Neurosurgery

Neurosurgical Subspecialties

Neuro-Oncology

Skull Base

Open Vascular

Endovascular

Subspecialties (Fellowships)

Tumor

Spine

Peripheral Nerve

Vascular

Pediatrics

Functional



Comprehensive management of brain tumors.
§ Awake surgery
§ Electrophysiological mapping
§ Laser-induced thermal therapy
§ Gamma Knife radiosurgery
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Tumor – Neuro-Oncology



Emphasis on tumors arising along base or floor of skull
§ Transcranial microsurgical approaches
§ Endoscopic endonasal surgery
§ Transorbital surgery
§ Endoscopic/exoscopic port surgery
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Tumor – Skull Base



Craniocervical, cervical, thoracic, lumbar, sacral spine
§ Degenerative
§ Trauma
§ Congenital
§ Tumor
§ Infection/Inflammatory
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Spine



Nerves outside the brain/spinal cord including brachial plexus
§ Brachial plexus injuries
§ Metabolic and other neuropathies
§ Compression syndromes
§ Inflammatory lesions
§ Tumors
§ Pain
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Peripheral Nerve



§ Aneurysms
§ Arteriovenous malformations
§ Cavernous malformations
§ Fistulas
§ Carotid stenosis
§ Developmental 
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Vascular - Open



Minimally invasive, access through peripheral arteries
§ Aneurysms
§ Arteriovenous malformations
§ Cavernous malformations
§ Fistulas
§ Carotid stenosis
§ Developmental
§ Stroke
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Vascular - Endovascular



§ Congenital/Developmental
§ Tumor
§ Trauma
§ Vascular

§ Spine
§ Functional
§ Hydrocephalus
§ Everything
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Pediatrics



Emphasis on restoring quality of life/neurological function
§ Cognitive & neuropsychiatric
§ Epilepsy
§ Movement disorders
§ Pain
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Functional
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1889 – Johns Hopkins Hospital founded



Harvey Cushing

1896 – Surgical assistant to William Halsted



1900-1901 - Cushing spends one year in 
Europe observing others and studying blood 
pressure in the context of brain compression. 

Osler Cushing Halsted



1901 - Halsted offers Cushing a full-time surgical 
position working in neurology and neurosurgery.

Osler Cushing Halsted



1911 – 1912:
87 neurosurgical 

cases completed by 
Harvey Cushing 
and his medical 

student assistant, 
Walter Dandy.



Walter Dandy

By 1919, Dandy is 
established as Chief of 
Neurosurgery at Johns 

Hopkins.



Walter Dandy

Described treatment of 
hydrocephalus, 

pneumoencephalography, 
first aneurysm clipping



Earl Walker

1947 - succeeds Dandy 
as Chief of Neurosurgery

Credited with describing 
Dandy-Walker syndrome



1973 – Donlin Long becomes 
first director of the Department of 

Neurosurgery.

Pioneer in electrostimulation for 
treatment of back pain. 

Founded the Johns Hopkins 
Blaustein Chronic Pain Clinic.



2000 – Dr. Henry Brem
succeeds Dr. Long as chair of 

the Department of Neurosurgery

Developed carmustine wafers (Gliadel) leading to 
significant increases in the median survival of 

patients with glioblastoma.



The Hunterian Laboratory

Established in 1895 by 
Welch and Halsted

Cushing appointed as 
laboratory head in 1904



The Hunterian Laboratory

Thrived until Walter 
Dandy’s death in 1946

Resurrected in 1984 by Dr. 
Brem



The Hunterian Laboratory: Now

Tumor Spine
Vascular

Pediatrics

Hydrocephalus



The Department of Neurosurgery: Now
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If you needed to get to center of 
head for an operation, how would 

you get there?





Open Approach: Pterional Craniotomy
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Open Approach: Pterional Craniotomy



Open Approach: Pterional Craniotomy







Drawbacks of Open Surgery

Wound healing, infection, 
neurological damage, etc



Alternative to an open approach?



Endoscopic Endonasal Approach







Endoscopic Endonasal Approach



Endoscopic Endonasal Approach



Endoscopic Endonasal Approach





How then is surgery safely performed 
around such high-stakes anatomy?



Surgical Navigation Systems





Registration defines a correlation between a reference point 
in a 3D data set such as CT or MRI with the corresponding 
reference point in a patient. 
Most navigation systems achieve position errors on the 
order of 2mm
§ Vulnerable to physical displacement or computer 

malfunction
§ Requires repeated visual confirmation of registration 

accuracy during surgery
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Surgical Navigation



Surgical navigation systems display the same image 
information even as anatomy changes.
§ Relationship between endoscopic view and navigation 

view is lost over time
Intra-operative cone-beam or CT imaging is a way to update
visualization
§ BrainLab Brainsuite iCT
§ Medtronic O-Arm system

57

Surgical Navigation



§ Additional radiation, 
operative time, and costs.

§ Inferior reconstruction 
quality if using cone-beam.
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Drawbacks of Intra-Operative CT



§ Enhance patient safety and outcomes by reducing 
potential complications and radiation exposure

§ Reduce costs by improving clinical workflow and clarity 
of intraoperative visualization
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Rationale for improving navigation



How then do we improve
navigation during endoscopic 

endonasal surgery?



Proposal: 
Utilize images from the 

endoscope as a basis for 
registration to pre-operative 
imaging and reconstruction of 

anatomical surfaces.



Goal: transform the endoscope from a visualization device to 
an instrument for quantitative 3D measurement. 

Endoscopic measurements combined with CT or MRI to 
provide:
§ enhanced navigation (goal accuracy 0.5mm), 
§ tissue surface reconstruction, 
§ and fused image visualization.
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Quantitative Endoscopy (QE)



Image features detected and matched in two temporally 
adjacent images.

These matching pairs are then used to estimate the 
camera motion using a robust estimator we have 

developed

Video-Based Navigation System Overview



Once the camera motion is estimated, the 3D location of 
the matched features are reconstructed.

The reconstructed 3D surface points are then passed to 
the 3D-3D registration component.

Video-Based Navigation System Overview



Target Registration Error (TRE)



Key result: TREs using video-CT methods are 
measurably improved over traditional methods

difference measure between an observed image and one predicted from the preoperative data [35, 64–68], and
geometry-based methods that first reconstruct partial 3D models from multiple video images and then compute
a registration using 3D-to-3D techniques [69–71]. Thus far, most reported methods for endoscopic surgical
navigation have been of the first type. An important limitation of these methods is that they require robust methods
for predicting image appearance to be accurate. Our work has explored methods of the second type [7–14, 73].
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Figure 2: Target registration error (TRE) for cadaver
study #2 for our laboratory Optotrak based system,
a Medtronic StealthStation, and Video-based and
Video-tracking based registration. The rank statis-
tics from top to bottom are the maximum, third quar-
tile, median, first quartile and the minimum.

Stereo and multi-view reconstruction in computer vision is
heavily studied [74–77]. Reported work on surface reconstruc-
tion from endoscopic video is less common. Co-PI Taylor per-
formed early work [78, 79] using hierarchical correlation. Most
recent work has focused on the challenges of dense soft tissue
reconstruction from stereo [80–88], there there has been some
investigation of monocular reconstruction [89]. To date, there
are no stereo endoscopic devices that are widely used in en-
donasal surgery, a situation unlikely to change1 in the near future.
Thus, we have chosen to focus on applying multi-view recon-
struction techniques to traditional endoscopic images to update

a prior model. It is important to note that these methods would
be enhanced by stereo endoscopy should it become available.
Technical Innovations: Our prior results demonstrate the
promise of QE for both navigation enhancement and reconstruc-
tion. Our first innovation is the use of direct, local measurement
of Fat through high-accuracy registration of video imagery to
surfaces in a pre-operative CT scan (video-CT registration), thus
providing a new, high-accuracy solution to enhance the precision
of navigation (Aim 1). In recent work, we have demonstrated that
video-CT registration is able to improve the accuracy of traditional navigation systems by more than a factor of two
to submillimetric levels (Figure 2). Further work is proposed to improve this to a target level of 0.5 mm, to enhance
the speed of the process, and to develop online quality assessment metrics for registration accuracy.

Figure 3: A full 3D reconstruction of a pediatric
airway from video imagery acquired with a tracked
endoscope.

Our second innovation is the development of high-accuracy
multi-view reconstruction methods from sequences of biomedi-
cal images (intraoperative surface reconstruction), thus provid-
ing a non-invasive, radiation-free means of measuring changes
to anatomy intraoperatively (Aim 2). In recent work, we have
demonstrated the feasibility of producing a high accuracy surface
reconstruction from video acquired by a tracked endoscope as
shown in Figure 3.

Although the technical bases for video-CT registration and in-
traoperative surface reconstruction are relatively well-understood,
the application of these ideas to medicine has been limited by
the complexity of biomedical endoscopic images. Our initial re-
sults suggest that these hurdles can be overcome and, as further
described in Section 2.C, practical video-enhanced navigation is
within reach.
Clinical Innovations: Our project will provide three unique and
significant innovations for endoscopic sinus surgery. First, video-CT registration provides a means for improving
the usability of existing navigation technology in sinus surgery with no additional cost or equipment, and with
minimal disruption to the surgical workflow. We believe this will lead to reductions in the time necessary to
perform surgery (by reducing or eliminating the time taken to use traditional navigation methods), and reduce
the likelihood of surgical errors. Second, surface reconstruction from endoscopic images to compute anatomic
changes intraoperatively as surgery progresses, thus providing a new way of monitoring surgical progress, again
improving, time-efficiency, patient safety, and offering the potential for cost reduction. Finally, improvements in

1We have in fact evaluated two generations of stereo endoscopy systems by Visionsense (Orangeburg, NY) both technically and
clinically. Although they are improving rapidly and are exciting to use, such systems are still noticeably inferior to traditional endoscopes.



Key result: tissue surfaces can be 
reconstructed in 3D using endoscope video.



Incorporation of computational vision algorithms with 
traditional navigation methods provides several benefits.
§ Improves usability of existing navigation technology in 

sinus surgery with no additional cost or equipment.
§ Minimal disruption to the surgical workflow.
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Quantitative Endoscopy (QE)



§ Aim #1: Develop video-CT registration algorithms that are 
accurate to CT resolution. 

§ Aim #2: Develop methods for surface shape estimation 
from endoscopic images. 

§ Aim #3: Perform comparative evaluation of video-CT-
based navigation on patient data. 

§ Aim #4: Assess the accuracy and reliability of 
intraoperative surface estimation on patient data. 
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Next Steps: Translation to Sinuses/Skull Base





Sinus Reconstruction
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Technology is also being leveraged 
to improve traditional surgical 

methods and our training 
system. 



Surgical training translates to 
§ prolonged operative times, 
§ increased resource usage, 
§ and therefore, higher operating room costs.1
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Constraints of Modern Surgical Training



In 2003, the ACGME mandated an 80-hour 
duty limit on residents.
§ This modernization required that 

surgeons be trained in fewer hours, and 
therefore more efficiently.
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Constraints of Modern Surgical Training



Surgical training is susceptible to bias
§ Female trainees are more likely to receive 

negative assessments compared to males.2-5
§ Bias may be an assumption of a resident’s 

skill based on years of training.
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Constraints of Modern Surgical Training



The Objective Structured Assessment of Technical 
Skills (OSATS) is a proposed solution for bias.6

77

Constraints of Modern Surgical Training

§ The OSATS is dependent on the presence of 
examiners, and thus prone to subjectivity.7



Artificial intelligence models of surgical ability have 
successfully measured:
§ task completion time, 
§ motion smoothness, 
§ positioning/angling, 
§ bleeding amount, 
§ and kinematics such as applied force, speed, or 

acceleration.10-12
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Advances in Modern Surgical Training



AI can assess skill level in surgical video with overall 
accuracy between 92.75 and 100% depending on the 
observed task.13,14

ML algorithms can also match human expertise in 
providing objective assessments of surgical skill.10,15–18

§ AI may also be used to predict surgical resident 
performance to help tailor training for at-risk 
residents.19,20
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Advances in Modern Surgical Training



The most common method 
for determining operative 

skill level through ML 
methods has been 

retrospective, video-
based assessment.



To date, there has not been 
an intra-operative use of 

ML to provide real-time 
feedback for neurosurgeons. 



Our aim is to standardize 
and optimize 

neurosurgical resident 
education by utilizing 
machine learning to 

provide both real-time and 
longitudinal, non-biased 

feedback.



Project Overview
Aim 1: Define a “gold standard” for craniotomy performance 
through review of intraoperative point-of-view video. 
Aim 2: Develop a deep learning algorithm that compares 
trainee to attending performance during a craniotomy.
Aim 3: Assess the impact of real-time feedback on trainee 
performance in a cadaveric model of craniotomy.
Aim 4: Prospectively compare the impact of and bias within 
resident, attending, and AI feedback on resident performance.
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Project Overview



POV craniotomy 
video recorded 

from residents and 
attendings

Aim 1: Define a “gold standard” for craniotomy 
performance through review of intraoperative 

point-of-view video. 



Aim 1: Define a “gold standard” for craniotomy 
performance through review of intraoperative 

point-of-view video. 



DeliverablesPOV craniotomy 
video recorded 

from residents and 
attendings

Iterative ranking of 
craniotomy videos 
by an institutional 

panel

Structured 
interviews to 

provide in-depth 
description of 

craniotomy 
performance

Curated, labeled, 
institutional 
database of 

craniotomy video

Craniotomy 
assessment rubric

Aim 1: Define a “gold standard” for craniotomy 
performance through review of intraoperative 

point-of-view video. 
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Project Overview



Final ML Algorithm

Aim 2: Develop a deep learning algorithm that 
compares trainee to attending performance during a 

craniotomy.

Novel Measures of Skill

Pupillometry/Gaze

Instrument Tracking
§ Task completion time
§ Motion smoothness
§ Positioning/angling

§ Cognitive workload
Institutional 
craniotomy 

video 
database

ML Algorithm Development

Algorithm

Validation & 
Testing

Performance 
Measurements



Aim 1: Define a “gold standard” for craniotomy performance 
through review of intraoperative point-of-view video. 
Aim 2: Develop a deep learning algorithm that compares 
trainee to attending performance during a craniotomy.
Aim 3: Assess the impact of real-time feedback on trainee 
performance in a cadaveric model of craniotomy.
Aim 4: Prospectively compare the impact of and bias within 
resident, attending, and AI feedback on resident performance.
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Project Overview



Realtime Audio/Visual Feedback

Recommendations for 
next best step

Negative behavior 
corrections

Neurosurgery resident performs 
a cadaveric craniotomy

Aim 3: Assess the impact of real-time feedback on 
trainee performance in a cadaveric model of craniotomy.

Raw data 
streamed to 

computer

Algorithm Analysis of Raw Data

Comparison of new user 
data to expert behavior

Anticipated Benefits

Earlier time to resident independence

More time learning operative nuances

Improved intraoperative safety

Improved intraoperative efficiency



Aim 1: Define a “gold standard” for craniotomy performance 
through review of intraoperative point-of-view video. 
Aim 2: Develop a deep learning algorithm that compares 
trainee to attending performance during a craniotomy.
Aim 3: Assess the impact of real-time feedback on trainee 
performance in a cadaveric model of craniotomy.
Aim 4: Prospectively compare the impact of and bias within 
self, attending, and AI feedback on resident performance.
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Project Overview



Resident and attending 
complete a craniotomy

Anticipated Benefits

Evaluate bias in feedback

Individualized feedback

Assess new methods for 
defining and tracking 
resident competency

Aim 4: Prospectively compare the impact of and bias within 
resident, attending, and AI feedback on resident performance.

Craniotomy assessment completed via Qualtrics

Resident Attending of 
Record

Blinded 
Attending

Raw video data

Craniotomy assessment 
completed by ML algorithm

Online Resident Feedback Platform

Prospective monitoring of 
performance 

Estimated training level

Individualized feedback

Estimated competence in 
craniotomy components
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