Surface Simplification (Gueziec's Method)

601.455/655

Gueziec's Method

- Reference
- A. Gueziec, "Surface Simplification inside a tolerance volume", IBM Research Report RC20440, 5/20/97
- Essentially "triangle decimation" done correctly
- Preserves topology
- Preserves volume
- Provable error bound

Approximated bunny

Figure 3: Error volume partially represented using color and spheres centered at surface vertices. The radius of each sphere equals the errorvalue at the vertex, here bounded by 8 \% of the bounding box diameter.

Notation: "star" \mathbf{v} * of a vertex v

E
Figure 4: A : the star \mathbf{v}^{*} of a regular vertex \mathbf{v} of valence seven. B : the link $\boldsymbol{\ell}(\mathbf{v})$ of the regular vertex \mathbf{v}, composed of one simple closed polygonal curve. C: the star \mathbf{w}^{\star} of a singularvertex \mathbf{w} of valence four. D : the link $\boldsymbol{\ell}(\mathbf{w})$ of \mathbf{w}, composed of two disconnected polygonalcurves. E : the star \mathbf{u}^{\star} of a boundary vertex of valence five.

Notation: "star" $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)^{*}$ of edge $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$

Fundamental operation: Edge Collapse

Priority Weighting

Algorithm outline

Until Queue/ Last Bucket Empty:

- Take edge with low(est) weight
- If edge can be safely collapsed

1. If valence does not exceed maximum
2. If simplified vertex is regular
3. If triangle normal rotation is acceptable
4. If triangle compactness is acceptable
5. If error does not exceed tolerance
\square Change neighboring configuration
\square Remove all edges of the star from the queue
\square Reinstate new edges in the queue

- Else
remove edge from queue

Figure 6: Simplification algorithm.

Book-keeping to remember hierarchy

Figure 7: A: an edge refers to four indices. B: defining parents of surface elements during an edge collapse.

Picking new vertex to preserve volume

Volume associated with edge star is sum of tetrahedra $\mathrm{v}_{0}=$ vertex associated with simplified vertex star
$g_{0}=$ centroid of edge star

Picking new vertex to preserve volume

Given edge $\operatorname{star}\left(v_{1}, \mathrm{v}_{2}\right)^{*}=\left\{\mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. Let T_{12} be the set of all triangles t in $v_{1} \cup v_{2}{ }^{*}$ and let vertices $(t)=\left\{v_{t 1}, v_{t 2}, v_{t 3}\right\}$ be the set of verticies associated with a triangle t. Compute the centroid $g=\sum_{i=3}^{n} \frac{v_{i}}{n-2}$ of $\left(v_{1}, \mathrm{v}_{2}\right)^{*}$. Then the volume associated with the $\left(v_{1}, v_{2}\right)^{*}$ is

$$
V_{1,2}=\sum_{t \in T_{12}} V_{\text {tetra }}\left(g, v_{t 1}, V_{t 2}, v_{t 3}\right)
$$

We want to pick v_{0} such that

$$
\sum_{i=3}^{n-1} V_{\text {tetra }}\left(g, v_{0}, v_{i}, v_{i+1}\right)=\sum_{t \in T_{12}} V_{\text {tetra }}\left(g, v_{t 1}, v_{t 2}, v_{t 3}\right)
$$

Picking new vertex to preserve volume

- Volume preservation constraint defines a plane on which v_{0} must lie.
- Select the point on this plane that minimizes sum-ofsquared distance to planes of all triangles being collapsed

Volume preservation results

model	Femur	Buddha	Deino
original \# of triangles	180,854	333,586	44,954
simplified \# of triangles	3,124	49,106	19,490
original volume	$233,462.7455 \mathrm{~mm}^{3}$	$23,048,568.98 \mathrm{pixel}^{3}$	$230,276.599 \mathrm{~mm}^{3}$
vol. after simplification	$233,462.7452 \mathrm{~mm}^{3}$	$23,048,569.03 \mathrm{pixel}^{3}$	$230,276.600 \mathrm{~mm}^{3}$

Triangle compactness improvement

Figure 11: A visual inspection of these triangles extracted from the shaft of the Femur model shows that facets are more regular in the simplified femur model produced by the our algorithm (Right) than they are in the original output of an iso-surface algorithm (Left). In particular, most "sliver" (very narrow) triangles have been removed. Histograms of triangle compactness presented in Fig. 10 confirm this observation.

Copyright © CISST ERC, 2003

Triangle compactness improvement

Figure 10: A: histogram of compactness values before simplification for the Femur example. B: histogram of compactness values after simplification. C: example of triangles of compact ness values of .1 to 1 in . 1 increments, corresponding to boundaries between the histogram bins. A flat triangle has a compactness of zero.

Basic idea of tolerance volumes

Generate volumes from vertex tolerances

Error "tube" around an edge

Figure 14: An edge tube

Triangle tube or "fat" triangle

Figure 15: A triangle tube.

Local enforcement of tight tolerance

Figure 13: Using the tolerance volume to maintain tangency of two surfaces after simplification. From Left to Right, original sphere model (320 triangles) represented with tangent plane, simplified sphere model (82 triangles) with a tolerance equal to 10% of the sphere diameter; the tangency condition is violated. Simplified sphere model (88 triangles) with the same global tolerance, but with a tolerance of 0 at the contact point.

Error Volume \& tolerance volume

Figure 12: A: Error volume, in green (A1), centered on the simplified surface (A2). The original surface (here, curve) is not only contained in the error volume, in dashed red (A3), but also intersects all the spheres, in blue (A4). B: Tolerance volume, in blue (B1), centered on the original surface ($B 2$). The simplified surface (B3) is contained inside the tole rance volume and intersects all the spheres. C: The final error volume contains all the intermediate error volumes. D: The initial tolerance volume contains all the intermediate tolerance volumes. A simplification operation is rejected if the width of the resulting tolerance volume is negative.

Merging Rule

When merge, assign (enlarge) vertex tolerances so that old surface shell is guaranteed to be completely inside the new surface shell

Simplest method to assign vertex tolerances

Figure 16: Simplest method (Contraction Method) for computing error values.

Projection Method

Figure 35: Types of Constraints generated with the Projection Method.

Boundary Collapse

Figure 21: Collapse of a Type I boundary edge. Arrows indicate vertex, triangle and edge representatives after collapse.

Buddah

Figure 24: A: Buddha model of 334 K triangles. B : simplification with 46 K triangles using a uniform tolerance. C: simplification with 49 K triangles using a variable tolerance. D: coloring of the tolerance volume for the surface of C, with increasing values from blue to red in a Rainbow colormap.

Figure 25: A: Lamp model with 5,052 triangles, flat shaded; Rainbow colors are assigned to surface components by order of vertex count. B: Simplified model (686 triangles) with maximum error of 1% of the bounding box diameter. B: Simplified model (2,035 triangles) with volume preservation. D: Result of a method that does not bound the distance from simplified to original.

Femur Simplification

Original (181 K triangles)

0.5 mm tolerance (26.8 K triangles)

Femur Simplification

Original (181 K triangles)

2.0 mm tolerance (3,124 triangles)

Copyright © CISST ERC, 2003

Carotid artery

Figure 27: A: Carotid Arteries (57 K triangles). B: Simplification (5.6 K triangles) with a maximum error of 0.8%. C: Superimposition of A and B.

Engine noise data

Figure 28: Engine Noise level Data: simplified from 660 K triangles down to 6.7 K , with an error tolerance of 4% of the surface largest dimension.

Terrain/humidity map (original)

Figure 29: Terrain model of the region of Atlanta with humidity values color coded using a Rainbow colormap (309 K triangles)

Figure 30: Simplified terrain without color preservation (89 K triangles).

Figure 31: Simplified terrain with color preservation (92 K triangles).
Copyright © CISST ERC, 2003

Phone

B

Figure 34: A: visualization of distances from each point of the original Phone to the 1% Model, with the colormap used for A and B. B: visualization of the errorvolume of the 1% Model. C: histogram of distances measured from points of original Phone to 1% Model. B: histogram of error values on the 1% Model.
Copyright © CISST ERC, $2003 \quad$ Engineering Research Center for Computer Integrated Surgical Systems and Technology

