Bringing “the sixth sense” for surgeons using light and sound

Jeeun Kang, Ph.D.

Computer-Integrated Surgery (CIS) I
October 4, 2022
Hackerman B17

Evolution of my personal interest

• One-dimensional advances towards smaller clinical ultrasound (US) imaging

• Higher spatiotemporal-spectral contrast

• Multi-modal imaging

Could be more colorful?

Could be more colorful?

Fractional change in FL intensity [%]

[Fig. 10 AX]

Could be more catching subtle temporal changes?
Defining the right form of “the sixth sense”

Knowledge in human anatomy & body memory of surgical procedures

Vision: a dynamic input

Crisp perception is a must for the new sixth sense
- High spatiotemporal resolution
- High contrast resolution
- Wide volumetric field-of-view
- Real-time feedback
- No surgical interruption

Current state-of-the-art in intra-operative guidance

Current state-of-the-art in intra-operative guidance

Fluorescence imaging

- Only 2-dimensional perception with en face imaging FOV

Confocal / multiphoton microscopy & Raman spectroscopy

- Slow imaging
- Limited imaging depth & FOV

Optical coherence tomography (OCT)

- Small FOV in few mm diameter
- Limited contrast resolution

X-ray

- Ionizing effect
- Interrupt the surgical procedure

Prostate MRI

- Challenging for intra-operative use

Medical ultrasound

- **Anatomical**
 - Static 2D compound
 - 1D array (e-scan)
- **3D/4D imaging**
- **Synthetic aperture focusing**
- **Functional & Molecular**
 - Flow
 - CA
 - Elastography
 - Photoacoustics

References:

Prostate Cancer (PCa)

- PCa is a leading organ for new cancer cases for males, (21% in total cancer diagnosis) resulting second highest cancer deaths †

- High survival rate when localized, but survival rate drops with metastasis

- Early PCa detection & accurate surgery for negative tumor margin are the best defense strategy

Clinical US imaging of PCa

...
PCa management in healthcare

![Diagram of PCa management process]

- **Prostate-Specific Antigen (PSA)**
 - High false-positive rate (75%)†

- **MRI PET/CT**
 - The prevalence of nearly invisible PCa on TRUS ranges from 25 to 42%‡

- **Transrectal US-guided biopsy**

- **Histopathology**
 - Post-operative complications: erectile dysfunction (59.9% at 18M); incontinence (8.4% at 18M)

Mission

![Diagram showing mission goals]

- **Higher spatial resolution**

- **Molecular contrast**

Limited aperture, but desire to see more – What shall we do?

Synthetic aperture focusing?
Synthetic “lateral” aperture focusing in medical ultrasound

Forget about something?

Synthetic “radial” aperture focusing (rSAF)

Acoustic field expression of single transmission

\[\Phi_\alpha (y, z, t) = e^{-j\alpha} \frac{1}{j\lambda ||R||_2} \Psi_\alpha (y, z) \]

Continuous transmit beam pattern at a depth of \(R \)

\[\Psi_\alpha (y, z) = e^{j\alpha} = e^{j\lambda, \sqrt{(y-R)^2 + (z-R')^2}} \]

Synthetic transmit aperture focused beam pattern at \((y_f, z_f)\)

\[\Psi_{TSAF}(y_f, z_f) = c_0 \int_{-\alpha}^{\infty} p_2(\alpha)e^{-j\lambda, \sqrt{(y_f-R)^2 + (z_f-R')^2}} \Psi_\alpha (y, z) d\alpha \]

Scale factor

\[c_0 = \frac{1}{j\lambda ||R||_2} \]

Synthetic focusing delay

\[\tau(\alpha) = e^{-j\lambda, \sqrt{(y_f-R)^2 + (z_f-R')^2}} \]

Analytical solution for synthetic radial aperture focusing (rSAF)

Synthetic transmit aperture focused beam pattern

\[\Psi_{TSAF}(y_f, z_f) = c_0 \int_{-\alpha}^{\infty} p_2(\alpha)e^{j\lambda, \sqrt{(y_f-R)^2 + (z_f-R')^2}} \Psi_\alpha (y, z) d\alpha, \]

\[\tau(\alpha) = e^{-j\lambda, \sqrt{(y_f-R)^2 + (z_f-R')^2}} \]

\[\Psi_\alpha (y, z) = e^{j\alpha} = e^{j\lambda, \sqrt{(y-R)^2 + (z-R')^2}} \]

\[\Psi_{TSAF}(y_f, z_f) = c_0 \int_{-\alpha}^{\infty} p_2(\alpha)e^{j\lambda, \sqrt{(y_f-R)^2 + (z_f-R')^2}} \Psi_\alpha (y, z) d\alpha. \]

Fresnel approximation

\[R - R_f = \frac{y^2 - y_f^2}{2f} + \frac{r(y - y_f)}{z_f} \]

\[y' = y - y_f \]
Analytical solution for synthetic radial aperture focusing (rSAF)

\[\Psi_{\text{rSAF}}(x_f, y_f, z_f) = \frac{c_0 e^{j k \frac{r^2 - y_f^2}{2 z_f}}}{R_f} \mathcal{F}[p_0(a)] e^{j k r_y y_f} \]

Discrete synthetic transmit aperture focused beam pattern

\[\Psi_{\text{rSAF}}(y_f, z_f) = c_0 e^{j k \frac{r_y^2 - y_f^2}{2 z_f}} \mathcal{F}[p_0(a)] e^{j k r_y y_f} \]

Null-to-null beam width

\[y_{n, \text{ML}} = \frac{\lambda a_f}{r_n \Delta a} = \frac{\lambda a_f}{r_{a_{\text{max}}}} \]

Grating lobe positions

\[y_{n, \text{GL}} = \frac{\lambda a_f}{r_n \Delta a} n \]

(n = 1, 2, ...)

Practical implementation strategy

Virtual source-based SAF technique

\[\Psi_{\text{rSAF}}(x_f, y_f, z_f) = \frac{c_0 e^{j k \frac{r^2 - y_f^2}{2 z_f}}}{R_f} \mathcal{F}[p_0(a)] e^{j k r_y y_f} \]

Synthetic aperture focusing delay calculation

\[\tau_f(i, z) = \frac{d_i(z)}{c} \]

(i.e., \(R_f \))

Radial aperture synthesis

\[l_{\text{rSAF}}(\theta_n, z) = \frac{1}{N_{\text{syn}}(z)} \sum_{i=-N_{\text{syn}}(\theta_n, z)/2}^{N_{\text{syn}}(\theta_n, z)/2} l_i(\theta_n, \tau_f(i, z)) \]
Design framework

- Sagittal axis, \(z \)
- Frontal axis, \(y \)
- TRUS array design
 - Acoustic frequency
 - Elevation f-number
 - Scanning radius
 - Radial scanning interval
 - Imaging depth

Spatial resolution & grating lobe

\[y_{SL}^f = \frac{\lambda x_f}{r \Delta \alpha} \]
\[y_{GL}^f = \frac{\lambda x_f}{r \Delta \alpha} n (n = 1, 2, 3, \ldots) \]

- \(d_{YS} = 5 \text{ mm}; h = 7 \text{ mm} \)

\[y_{SL}^f \quad (r = 5 \text{ mm}) \]
\[y_{SL}^f \quad (r = 10 \text{ mm}) \]
\[y_{SL}^f \quad (r = 15 \text{ mm}) \]

- **(a)** Sagittal axis
- **(b)** Synthetic aperture width (mm)
- **(c)** FWHM (mm)
- **(d)** ΔSNR (dB) vs. TRUS-CON

\[\Psi_{RAF}(x_f, y_f, z_f) \]

- Proportional
- Inversely proportional

\[^{†} \text{H. Song, J. Kang, J Comput Des Eng 9, 1774-1787 (2022).} \]

\[^{‡} \text{J. Kang, et al., US Patent 63/355,525 (2022).} \]
2D Field-II simulation – Frontal-sagittal plane

Comparison to clinical standard

What's next?

Null-to-null beam width

\[\gamma_{\text{ML}} = \frac{\lambda z/2}{\cos \alpha} \]

Anus diameter
2-3 cm

Rectal diameter
3-5 cm

What's next?

Patient
TRUS/TRPA imaging device
Passive arm
Table
Sliding base

Insertion mode
(22-mm diameter)

Waterbag
Motor and gear transmission for rotation
Piezoelectric array transducer + optical fiber
Motor and lead screw transmission for transducer extension

Imaging mode
(50-mm diameter)

Courtesy of Dr. Iulian Iordachita

Summary

- TRUS-rSAF technique can provide **unprecedented volumetric spatial resolution** higher than clinical convex/linear TRUS array transducer

- Analytical description and optimization framework were developed

- Mechatronic implementation will provide a next-generation TRUS imaging for higher sensitivity and specificity to detect and diagnose PCa

- Further works: prototyping & clinical translation

Mission

- **Higher spatial resolution**

- **Molecular contrast**

 - The prevalence of nearly invisible PCa on TRUS ranges from 25 to 42%.

 - Post-operative complications: erectile dysfunction (59.9% at 18M) and incontinence (8.4% at 18M).

 - Prostate-specific antigen (PSA) transrectal US-guided biopsy.

 - MRI/PET/CT.

 - Histopathology.

References

Prostate-Specific Membrane Antigen (PSMA)

- Type-II integral cell-surface membrane protein †

- Overexpressed in nearly all solid tumors (e.g., breast, bladder, pancreatic, testicular, or colorectal cancers) †

- High correlation to PCa aggressiveness, implying its functional role in PCa biology ‡

Targeting PSMA for early-PCa detection

PET/MRI/CT †
Pros: Wide field-of-view across whole-body; High specificity
Cons: Iodizing effects; Slow imaging speed; expensive

Optical imaging †
Pros: Real-time; easy to use
Cons: Superficial sensing depth

Extensive clinical trials stages I and II: NCT02282137, NCT02611882, NCT02488070, NCT02048150, NCT01173146 …

Clinical trials in IND stage: NCT01173146, NCT02048150

Adding light: biomedical photoacoustics

Air (medium)
Lightning (Light source)
Local heat expands volume
Acoustic propagation
Thunder (Photoacoustics)
Ear (sensor)

Competitive analysis

Multi-functional PSMA-targeted platform

Energy goes to internal conversion, rather than fluorescence.

Non-radiative relaxation in form of thermal energy.

Anti-cancer drugs
Radiolabels
MRI contrast

Multi-arm linker

Forming energy transfer within ground-state complex.

Second-generation PSMA-targeting agent

PSMA-targeting agent

Dendrimer

Control

In vivo PA-based PSMA-targeted imaging

In vivo PA-based PSMA-targeted imaging

![Image](image1.png)

Potential engineering pitfalls

Potential engineering pitfalls

![Image](image2.png)

Spectral system noise segregation

\[
\begin{align*}
\arg \min_{\mathbf{x}} & \quad \frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x} - \mathbf{y}^{T} \mathbf{A} \mathbf{x} \\
\text{subject to} & \quad \mathbf{x} \geq 0
\end{align*}
\]

In vivo validation

\[\begin{array}{cc}
\text{Pre-injection} & \text{Post-injection} \\
\text{Conventional scheme} & \text{SSE segregation scheme}
\end{array}\]

\[\begin{array}{cc}
\text{Ultrasound} & \text{Unmired contrast agent} \\
\text{10 min} & \text{Unmired noise}
\end{array}\]
In vivo validation

\[c_{SNR} = \frac{I_{PSMA+}}{I_{BG}} \]

\[c_{PSMA} = \frac{I_{PSMA+}}{I_{PSMA-}} \]

Summary

- PSMA-targeted imaging may endow new possibility to provide molecular contrast exclusively on aggressive PCa using TRUS/PA imaging

- Dedicated signal processing algorithms (spectral system noise, wavelength optimization, frame averaging) will enhance the clinical sensitivity and specificity

- Future works
 - Multi-functional (theranostics), multi-modal (PA/US + MRI or PET) imaging capability will be developed.
 - Multi-institutional team for animal model and clinical testing is in preparation (NIH, Hopkins).
Remarks

Transformable TRUS/PA imaging

Motor and lead screw transmission for transducer extension

Motor and gear transmission for rotation

Piezoelectric array transducer + optical fiber

TRUS/PA diagnostics & interventional guidance

• Expanded role in PCa diagnostics
• Microtumor detection (3-5 mm → 1-2 mm)
• High-accuracy biopsy guidance, targeting PSMA expression

Piezoelectric transducer

Waterbag

PSMA-targeted imaging

Signal processing algorithm

\[
\arg \min_{x \geq 0} \left(\frac{1}{2} x^T Q x - y^T Q x \right)
\]

Complication of radical prostatectomy

• **Erectile dysfunction** is a post-operative complication of radical prostatectomy

• Current nerve-sparing techniques only consider neurovascular bundle (NVB), excluding cavernous nerve branches

• Only 60-85% of PCa patients recover erectile function, and early recovery is uncommon (up to 2 years) †

‡ https://www.virginiamason.org/radical-prostatectomy
Current state-of-the-art

Fluorophore-based fluorescence imaging †
- Concern on tissue toxicity
- Long staining time (2hr – 14 days)

Coherent anti-Strokes Raman spectroscopy
- Slow imaging
- Limited imaging depth

Confocal and Multiphoton microscopy
- Not optimized for intra-operative use
- Limited imaging depth

Optical coherence tomography (OCT) ‡
- Lack of nerve-specific contrast
- Limited contrast resolution due to speckle artifacts

Prostate MRI §
- Slow speed
- Not portable

Near-infrared VSD mechanism

- **Transmembrane redistribution mechanism ††**

 - **Cyanine VSD (IR780 perchlorate)**
 - Non-fluorescent aggregates
 - PA signal

 - **Polarized cell state**
 - $\Phi_a \uparrow$, $\Phi_F \downarrow$

 - **Depolarized cell state**
 - $\Phi_f \uparrow$, $\Phi_A \downarrow$

 - **Polarized cell state**
 - Cyanine dye positively charged is attracted into cell membrane
 - The aggregation of VSD leads to fluorescence (FL) quenching, which increases PA efficiency

 - **Depolarized cell state**
 - Dispersion of VSD gives high FL efficiency

Near-infrared VSD characterization

- Artificial membrane diffusion potential model

\[\text{Polarized state} \quad \text{Depolarized state} \]

IR780 perchlorate
Valinomycin (K-specific ionophore)
Soybean lipid vesicle membrane
Potassium gradient
Free Na+
Gramicidin (nonspecific monovalent cation ionophore)
Na+
K+
K+ - specific ionophore

\[\text{Absorbance and fluorescence emission spectrum of near-infrared VSD. (A) Absorbance and fluorescence emission spectrum of near-infrared VSD. (B) Photoacoustic spectrum and intensity change at the 790 nm peak absorbance.} \]

In vitro VSD characterization (6µM).

Preliminary evidence of neural sensing

Non-invasive epileptic seizure detection

Non-invasive characterization of excitatory neurotransmittance at rat hippocampus

\[\text{Fractional change in VSD response [%]} \]

Motor cortex (0.3 mM NMDA)
Hippocampus (0.3 mM NMDA)
Hippocampus (3 mM NMDA)

\[\text{extracellular glutamate concentration (% basal)} \]
Proposed image-guided nerve-sparing laparoscopic radical prostatectomy

- **Objective:** Image-guided nerve guidance with:
 1. **Real-time functional nerve localization** with high specificity,
 2. **Short VSD staining duration** (~10 min)
 3. **Wide field-of-view** familiar with surgeons, and
 4. **Near-infrared imaging** for better transfascial nerve localization

![Image-guided nerve-sparing laparoscopic radical prostatectomy](image)

Step 1: Robotic tool approach through the ports on the abdominal incisions,
Step 2: Direct transfascial VSD staining within a time limit up to 10 min,
Step 3: Flushing out of the VSD on the prostate surface which is not bound at tissue membrane,
Step 4: Nerve stimulation for nerve-selective VSD contrast, and
Step 5: Nerve-sparing prostatectomy with the augmented nerve map using intra-operative FL imaging solution

In vivo experimental setup:

Imaging system and animal preparation

![In vivo experimental setup](image)

- **FL imaging module:**
 - Customized coherent fiber bundle-based endoscopic probe (50K cores at 0.1mm, 70°FOV, 2.5cm DOF)
 - sCMOS camera

- **Stimulation module:**
 - Electrical stimulator

- **ICP validation module:**
 - ICP measurement system

Pr: prostate; **Pn:** penis; **CN:** cavernous nerve; **RCC:** right corpus cavernosum; **ICP:** Intracavernosal pressure

In vivo experimental setup:
Imaging and stimulation protocol

- **Experimental protocol**

<table>
<thead>
<tr>
<th>Pre-stimulation</th>
<th>Electrical Stimulation</th>
<th>Post-stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min</td>
<td>1 min</td>
<td>3 min</td>
</tr>
</tbody>
</table>

Validation of erectile stimulation

- 4V Electrical pulses
- 5 ms
- 62.5 ms (16Hz)

Intracavernosal pressure [mmHg]

![Graph](image)

Real-time trans-fascial functional prostate nerve mapping in vivo

- **Time-averaged F/F₀ trace**
- **Fractional change in fluorescence intensity [%]**
- **Fluorescence intensity**

![Image of nerve mapping](image)

References

Histological validation of direct VSD delivery

- Successful direct VSD staining on nerve layer below prostatic fascia

![Image of histological staining]

Discussion

- We presented the preliminary results of real-time nerve guidance using dual-modal VSD and near-infrared FL imaging

- Our further works will be focused on
 - Collecting more data for statistical rigor
 - Toxicity study and efficiency evaluation with various VSD concentrations
 - Advance experimental setup to induce selective cavernous nerve blocking
 - Developing pulsed laser-based dual-modal intra-operative guidance system
 - *In vivo* large-scale animal study for evaluating clinical outcome (post-operative erectile dysfunction with functional guidance vs. no imaging guidance)
Defining the right form of “the sixth sense”

Knowledge in anatomy & surgery

PSMA-targeting agents

Voltage-sensitive dye

Transformable TRUS/PA x signal processing

Motor control

Vision: a dynamic input

Aggressive tumor

Erectogenic nerve

Anatomical context

Acknowledgement

• CDMRP PCRP W81XWH-18-1-0188 (PI)
• NIH Blueprint MedTech Pilot program (PI)
• NIH R41 EB033758 (MPI)
• NIH R01 HL139543; R24 MH106083
• Discovery award, Johns Hopkins University

Thank you