

	Longer Straight Line Motions
	 In many cases, one wants to command a fairly long "straight line" motion from some initial pose to a final goal pose. This can be done fairly straightforwardly as follows:
	$\mathbf{F}_{0} = \text{initial pose}; \mathbf{F}_{G} = \text{ goal pose};$ $\dot{\theta}_{\max} = \max \text{ angular velocity}; \mathbf{v}_{\max} = \max \text{ linear speed}$
	Define $\mathbf{F}_{G0} = [\mathbf{R}_{G0}, \vec{\mathbf{p}}_{G0}]$ such that $\mathbf{F}_{G}\mathbf{F}_{G0} = \mathbf{F}_{0}$ Compute axis-angle representation for $\mathbf{R}_{G0} = Rot(\vec{\mathbf{n}}_{G0}, \theta_{G0})$
	Compute $T_{move} = \max(\theta_{G0} / \dot{\theta}_{max}) \vec{\mathbf{p}}_{G0} / v_{max}); T_{left} = T_{move}$ while $T_{move} > 0$ do
	Wait for next time interval
	Perform housekeeping; input state ($\mathbf{q}, \mathbf{q}, \text{ forces, etc.}$) $T_{left} \leftarrow \max(T_{left} - \Delta \mathcal{T}, 0); \lambda \leftarrow T_{left} / \mathcal{T}_{max}; \mathbf{F}_{\mathcal{T}} \leftarrow F_{\mathcal{G}} \cdot \left[R(\mathbf{\vec{n}}_{G0}, \lambda \theta_{G0}), \lambda \mathbf{\vec{p}}_{G0}\right]$
	Set up optimization function to minimize $\left\ \mathbf{F}_{\tau}^{-1} \mathbf{F} (\vec{\mathbf{q}} + \Delta \vec{\mathbf{q}}) \right\ ^2$
	Output velocity goal $\Delta {f q}/\Delta T$ end
50	601.455/655 Fall 2022 Copyright R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology

