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Co-robotic ultrasound +  tracking algorithm 
à steady imaging

Stabilized imaging with the tracking 
algorithm.

Images are subject to physiological 
motions.
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Challenge and Motivation In a biopsy, compensate physiological motions and reduce 
musculoskeletal trauma for sonographers using co-robotic ultrasound

Methods
6-DoF motion estimation. A convolutional neural network is embedded 
to estimate out-of-plane motions.  Joint velocities control.

Evaluation and Results
Feasibility of the tracking algorithm within simulation environments built 
with scans obtained on biopsy phantoms, pork, etc.
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Challenge: A Biopsy Procedure

• An ultrasound-guided biopsy

Local anesthetic

Localize the mass

Insert the needle Extract a tissue 
sample

Insert the needle
Extract a 
tissue sample

...... until diagnosable 
samples are acquired Ultrasound-guided liver biopsy on a 47-year-old female patient1.  

1 Courtesy of https://www.youtube.com/watch?v=2SIZOqJiUt4
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Challenge: Physiological Motions

• Imaging of abdominal organs is 
subject to physiological motions:

• Respiratory motion
• Cardiac-induced motion
• Patient’s small movement

• Amplitudes of motions:
• E.g. Shimizu et al.3 investigated liver 

tumor motion using high-speed MRI 
• 21 mm, 8 mm, 9mm in the SI, AP and 

lateral directions.
Ultrasound sequence of liver undergoing respiratory and 
cardiac - induced motion2.

2 Courtesy of https://www.youtube.com/watch?v=NkDTNnvCtl4 
3 Shimizu, S., Shirato, H., Xo, B., Kagei, K., Nishioka, T., Hashimoto, S., & Miyasaka, K. (1999). Three-dimensional movement of a liver tumor 
detected by high-speed magnetic resonance imaging. Radiotherapy and oncology, 50(3), 367-370.

6



11/28/22

4

7

Challenge: Work-related Musculoskeletal 
Disorders (WRMSD)

Main causes of WRMSD5
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WRMSDS No pain

15%

45%
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SONOGRAPHERS WITH 
WRMSD2,963 participants 

in Evans et al.4

• Contact 
pressures

• Awkward or 
sustained 
postures

• Repetition
• Force 

An accumulation of repeated exposure 
to physical risk factors:

4 Evans, K., Roll, S., & Baker, J. (2009). Work-related musculoskeletal disorders (WRMSD) among registered diagnostic medical sonographers 
and vascular technologists: a representative sample. Journal of Diagnostic Medical Sonography, 25(6), 287-299. 
5 Murphey, S. (2017). Work related musculoskeletal disorders in sonography.

(Murphey, S., 2017). 
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Motivation

• Robotic arm:
• force control, accuracy, repeatability

• Co-robotic ultrasound

In a biopsy procedure, 
physiological motions of the 
target is another problem to solve.

“Hand-over-hand control” Respiratory motion
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Proposed Method: System Setup

Co-robotic setup

Tracking algorithm for stable imaging

• In-plane motion: 

• Out-of-plane motion: 

• 6 degree of freedom (DoF) motion:

• Proportional control on SE(3) error
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Proposed Method: Significance

A co-robotic ultrasound system with a 
tracking algorithm
• compensates physiological motions:

• keep track of the target frame
• suppress motion artifact and enhance image 

quality

• reduces musculoskeletal injuries for 
sonographers:

• use a robot for long-lasting procedures
• integrate with force control

• requires only B-mode images:
• apply to almost all commercial ultrasound 

machines

Have a robotic system to track the 
target during the biopsy

Sphere:
moving 

anatomy

Serial link:
UR5 

ÜImaging 
comparison

ÝUR5 
Robot 

motion 
simulation

10



11/28/22

6

11

Outline

Challenge and Motivation

Methods

Evaluation and Results

Discussion and Conclusions 

In a biopsy, compensate physiological motions and reduce 
musculoskeletal trauma for sonographers using co-robotic ultrasound 

6-DoF motion estimation. A convolutional neural network is embedded 
to estimate out-of-plane motions.  Joint velocities control.

Feasibility of the tracking algorithm within simulation environments built 
with scans obtained on biopsy phantoms, pork, etc.

Advantages. Limitations.

11

12

Overview: Tracking Algorithm

Acquire target frame 𝐼!, and a 
reference image 𝐼"#$ along 
the (+) direction

Target
Ref

+

Image 
processing

In-plane transformation

Template 
matching 
via NCC 
when no 
large 
rotation.

Out-of-plane transformation

Elevational displacement for each 
patch using CNN.

Overall out-of-plane 
transformation by 
minimizing the 
reconstruction error 
using all patches.

CALIBRATION
Step 1: acquire parallel B-

scans across the tissue within 
a small volume.

Step 2: fine tune the CNN 
weights with a small learning 
rate.

Joint velocity control on SE(3) Current Image 𝐼%
g*

g(t)

+

-

Image processing

Controller

If using different probes

12
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Estimation of Out-of-plane Motion 

(+)

Target
Frame Reference

Frame

Use a CNN to estimate 
the unsigned distance 
between two patches

Get the sign using both 
the target and 

reference frames

Fit the overall out-of-
plane transformation 

using all patches

(1) (2) (3)
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Speckle Decorrelation

Speckle
• Granular appearance in ultrasound images
• Diffuse scattering in a resolution cell

Speckle decorrelation
• Imperfect focus along the elevational direction à

neighboring patches are correlated
• Gaussian using RF signals and assuming 

Gaussian resolution cell

Resolution 
cell Elevational displacement

Co
rr

el
at

io
n

Speckle 
Decorrelation
Curve

6 Gee, A. H., Housden, R. J., Hassenpflug, P., Treece, G. M., & Prager, R. W. (2006). Sensorless freehand 3D ultrasound in real tissue: speckle 
decorrelation without fully developed speckle. Medical image analysis, 10(2), 137-149.

Conventional speckle decorrelation methods6:
• RF signals may not be accessible
• Hard to convert back to RF signals
• Rely on fully developed speckles

Our method only requires grayscale B-mode images:
• High non-linearity of the CNN
• “Correlation”

…… Envelope 
detector

Log 
compression

RF 

Grayscale 
B-mode 
image 

Beam 
forming

14
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CNN to Estimate Elevational Distance

In a tracking scenario, the target appearance varies.

A model invariant to the appearance of the masses.

Training data containing only speckle noises without 
anatomical features (e.g. vessels).

7 Prevost, R., Salehi, M., Jagoda, S., Kumar, N., Sprung, J., Ladikos, A., ... & Wein, W. (2018). 3D freehand ultrasound without external tracking 
using deep learning. Medical image analysis, 48, 187-202.

Prevost et al.7 3D freehand ultrasound estimation 
using deep learning

• Is used for tomography
• Depends on anatomical features of the specific 

part of the body (e.g. forearm)
Prevost et al., 2018

15

16

CNN Architecture

• A standard convolutional neural 
network

• # of parameters: ~ 2.7 million
• Real-time tracking. Less than 

50 ms on a PC with an NVIDIA 
GTX 1050 Ti GPU (use 16 
pairs of patches)

• Input: two neighboring B-mode 
image patches

• Output: elevational distance 
between two patches 

Conv block

Conv layer
Batch normalization

Conv layer
Batch normalization

Maxpooling

Optimizer: 
Adam

Loss function:
Logcosh (more 

robust to outliers 
compared with MSE)
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Estimation of Out-of-plane Motion

(+)

Target
Frame Reference

Frame

Use a CNN to estimate 
the unsigned distance 
between two patches

Get the sign using both 
the target and 

reference frames

Fit the overall out-of-
plane transformation 

using all patches

(1) (2) (3)
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Estimation of Out-of-plane Motion

Use a CNN to estimate 
the unsigned distance 
between two patches

Get the sign using both 
the target and 

reference frames

Fit the overall out-of-
plane transformation 

using all patches

(1) (2) (3)

(+)

Target
Frame Reference

Frame
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Velocity Control on SE(3) Group

• Implement a proportional (P) controller with double-geodesic feedback on SE(3)8

Sphere:
moving 

anatomy

Serial link:
UR5 

8 Bullo, F. and Murray, R. M., (1995). Proportional derivative (PD) control on the Euclidean group.

Robot simulation of one experiment using pork images. 

19

20

Data and Experiments

CNN Training Data
• Patch size: 60 x 100 pixels
• Patches contain only speckle noises
• Elevational displacement (ground truth) 

ranges from 0 to 1 mm (close to the size 
of a resolution cell)

• Sonix-Touch Q+ Ultrasound machine 
(Ultrasonix Inc., Richmond, BC, CA)

• Probe: BK L14-5/38 linear, 10 MHz
• Phantoms: CIRS Elasticity QA phantom 

model 049 and 049A
• Ground truth: linear stage + a dial 

indicator (0.001mm)
• 12,000 pairs: 80% for training, 20% for 

validation
• 2,000 patches collected on the other 

phantom for testing

20
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Motion Simulation
• Construct a volume using parallel scans
• Simulate cyclic motions 
• Implement P control to track the moving target

21

Data and Experiments

Data
• Sonix-Touch Q+ Ultrasound machine
• Probes: 

• (1) BK L14-5/38 linear; (2) C5-20/60 
curvilinear

• Phantoms: 
• (a) CAE Blue Phantom tissue biopsy 

ultrasound training model
• (b) Pork tenderloin

(a) (b)
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Evaluation and Results: CNN Estimation

• 10 parallel scans with 0.1 mm separation
• 756 patches in one image (slide by 20 

pixels along x, y axes)
• Accurate estimations in range 0.2 to 0.7 

mm
• Poorer estimations near 0 or 1 mm (near 

the size of the resolution cell)

Ground 
truth/mm Mean abs %

0.1 10.56

0.2 1.62

0.3 0.49

0.4 0.29

0.5 0.95

0.6 2.23

0.7 0.25

0.8 5.4

0.9 9.99

Estimations of 756 patches 
Mean absolute percentage error

• Label each pixel with the absolute 
error computed at the nearest 
patch center

• Dark regions correspond to non-
fully developed speckles (“bad” 
regions for speckle decorrelation)

1 cm

Original image Absolute error in mm

Ground truth: 0.5 mm
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Evaluation and Results: Biopsy Phantom

Target 
view

Target 
motion

Errors 
over 
time

No tracking With  tracking

• Target motion: 
• 4, 11 and 6 mm along axial, lateral and elevational axes
• 10 and 6 degree about x and y axes (w/o in-plane rotation)

• Error:
• Translations:  less than 0.7 mm
• Rotations: less than 2 degree

• No fine tuning. Same linear probe used for CNN training.

Stable imaging
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Evaluation and Results: Biopsy Phantom

Object 
motion

Error

• Target motion: 
• 4, 11 and 6 mm along axial, lateral and elevational axes
• Less than 10 degree about x and y axes (w/o in-plane rotation)
• Different random phase angles

• Low errors compared with the magnitudes of the motions.
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Evaluation and Results: Pork Tenderloin

• Target motion: 
• 1-DoF elevational translation (amplitude 10 mm)

• Error:
• Less than 1.05 mm

• Fine tuning using 400 pairs of patches. 40 epochs within 40 s (GPU)

Target 
view

Target 
motion

Error 
over 
time

No tracking With  tracking

Stable imaging
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Discussion and Conclusions

Verified the feasibility of a co-
robotic ultrasound system:

• Real-time Tracking of a 
moving object using 2D B-
mode images

• Out-of-plane motion 
estimation using CNN 
based on speckle patterns

• Velocity control on robot 
joints

Advantages:
• Provide stabilized imaging
• Track in real time
• Use only B-mode images
• Reduce musculoskeletal disorder for 

sonographers

Limitations:
• Larger deformation
• Quick and large motion – beyond the 

size of a resolution cell

Further development:
• Algorithms robust to in-plane rotation
• Kalman filter
• Force control

28
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Thank you
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Appendix 1: tracking algorithm

TRACKING
Step 1: at time 𝑡 = 0, acquire the target image 𝐼!.
Step 2: move end effector a small distance to the (+) elevational 

direction. Acquire a reference image 𝐼"#$.
while tracking:

Step 3: compute in-plane transformation -- NCC
Step 4: estimate out-of-plane translation for each patch 

using the CNN
Step 5: estimate the overall out-of-plane transformation 

using all patches
Step 6: compute transformation error and control the robot 

joint velocities 

Tracking algorithm

If using different probes

CALIBRATION
Step 1: acquire parallel 

B-scans across the tissue 
within a small volume.

Step 2: fine tune the 
CNN weights with a small 
learning rate.
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Appendix 2: P control on SE(3) 

• Implement a proportional (P) controller with double-geodesic feedback on SE(3) 
group [11]

Δ𝑔 = 𝑔%!% = 𝑔%" 0 𝑔%" 𝑡 𝑔&"'( 𝑡
'(
→ 𝑅%!), 𝑡%!%

*
+𝜔%!%
* = −𝐾+ log,- . 𝑅%!%
�⃗�%!%
* = −𝑅%!"

/ 𝐾0𝑡%!%

𝑉%!%
* =

(+𝜔%!%
* )∨

�⃗�%!%
*

𝑉*%* = 𝐴𝑑2"!"#$ 𝑉*%!
* + 𝑉%!%

*

Body Velocity

̇⃗𝑞 = 𝐽*
3 𝑉*%*

Joint 
Velocity

• Omit object velocity (the first term 𝑉=>4
= ) on the R.H.S à joint velocity

(Change coordinate to the base frame)

(Positive definite 𝐾+ and 𝐾0)
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