

Co-robotic ultrasound + tracking algorithm

> steady imaging

Images are subject to physiological notions.
Stabilized imaging with the tracking algorithm.
Stabilized imaging with the tracking indication of the tracking indica

Outline		
Challenge and Motivation	In a biopsy, compensate physiological motions and reduc musculoskeletal trauma for sonographers using co-robot	e <mark>ic</mark> ultrasound
Methods	6-DoF motion estimation. A convolutional neural network is embedded to estimate out-of-plane motions . Joint velocities control.	
Evaluation and Results	Feasibility of the tracking algorithm within simulation env with scans obtained on biopsy phantoms, pork, etc.	/ironments built
Discussion and Conclusions	Advantages Limitations	
		3

Outline		
Challenge and Motivation	In a biopsy, compensate physiological motions and reduc musculoskeletal trauma for sonographers using co-robot	e <mark>ic</mark> ultrasound
Methods	6-DoF motion estimation. A convolutional neural network is embedded to estimate out-of-plane motions . Joint velocities control.	
	Feasibility of the tracking algorithm within simulation env with scans obtained on biopsy phantoms, pork , etc.	/ironments built
Discussion and Conclusions	Advantages Limitations	
	Auvantages. Limitations.	4

Outline		
	In a biopsy, compensate physiological motions and reduce musculoskeletal trauma for sonographers using co-robotic ultrasound	
Methods	6-DoF motion estimation. A convolutional neural network is embedded to estimate out-of-plane motions . Joint velocities control.	
	Feasibility of the tracking algorithm within simulation environments built with scans obtained on biopsy phantoms, pork , etc.	
	Advantages. Limitations.	
	11	

Outline		
	In a biopsy, compensate physiological motions and reduce musculoskeletal trauma for sonographers using co-robotic ultrasound	
	6-DoF motion estimation. A convolutional neural network is embedded to estimate out-of-plane motions . Joint velocities control.	
Evaluation and Results	Feasibility of the tracking algorithm within simulation environments built with scans obtained on biopsy phantoms , pork , etc.	
	Advantages. Limitations.	

Outline		
Challenge and Motivation	In a biopsy, compensate physiological motions and reduce musculoskeletal trauma for sonographers using co-robotic ultrasound	
Methods	6-DoF motion estimation. A convolutional neural network is embedded to estimate out-of-plane motions . Joint velocities control.	
Evaluation and Results	Feasibility of the tracking algorithm within simulation environments built with scans obtained on biopsy phantoms, pork , etc.	
Discussion and Conclusions	Advantages. Limitations.	
	27	
27		

Discussion and Conclusions MUSIIC Advantages: Provide stabilized imaging Verified the feasibility of a corobotic ultrasound system: Track in real time • Use only B-mode images • Real-time Tracking of a • Reduce musculoskeletal disorder for sonographers moving object using 2D Bmode images Limitations: Out-of-plane motion Larger deformation estimation using CNN • Quick and large motion - beyond the size of a resolution cell based on speckle patterns Further development: Velocity control on robot · Algorithms robust to in-plane rotation joints Kalman filter · Force control 28

ppendix 1: tracking algorithm		
Tracking algorithm	TRACKING Step 1: at time $t = 0$, acquire the target image I_0 .Step 2: move end effector a small distance to the (+) elevaldirection. Acquire a reference image I_{ref} .	ational
If using different probes CALIBRATION Step 1: acquire parallel B-scans across the tissue within a small volume. Step 2: fine tune the CNN weights with a small learning rate.	 while tracking: Step 3: compute in-plane transformation NCC Step 4: estimate out-of-plane translation for each patc using the CNN Step 5: estimate the overall out-of-plane transformation using all patches Step 6: compute transformation error and control the joint velocities 	ch on robot
		30

