Data Collection System

for Smart Endoscope Study

Data List

DATA NAME	DATA TYPE	DATA RATE	ACCURACY	HARDWARE	SOFTWARE
Head Pose	Pose	20HZ	0.8mm/0.7°	Head Fixture, 6 DOF Reference, Aurora	NDI Tracker
Suction/Pointer Pose	Pose	20HZ	0.8mm/0.7°	Suction Tool, 6 DOF Cable Tool, Aurora	NDI Tracker
Endoscope Pose	Pose	20HZ	0.8mm/0.7°	Endoscope Adapter, 6 DOF Reference, Aurora	NDI Tracker
Fiducial Position	Pose	20Hz	0.8mm/0.7°	Standard Probe, 6 DOF Probe, Aurora	NDI Tracker
Endoscope Video	RGB Video	30HZ	N/A	PointGrey Camera	Point Grey Driver
Gaze	Gaze	30HZ	N/A	GazePoint	GazePoint API
CT Scan*	Dicom	N/A	N/A	X-RAY	3D Slicer
Statistical Data*	Dicom	N/A	N/A	Database	3D Slicer

Comment: all data except CT Scan and Statistical Data, is logged using rosbag. Gaze information is collected on a Windows computer and then transmitted to and logged on Linux. *This data is provided before the surgery.

Hardware List

PART NAME	QUANTITY	UNIT COST	VENDOR
Suction/Pointer Tool	1	\$30	WSE Manufacturing
Endoscope Adapter	1	\$30	WSE Manufacturing
Head Fixture	1	\$30	WSE Manufacturing

PART NAME	QUANTITY	UNIT COST	VENDOR
Aurora 6DOF Reference, 25mm Disc, Standard	2	\$400	DNI
Aurora 6DOF Cable Tool, 2.5 x 12mm	1	\$225	DNI
Aurora 6DOF Probe, Straight Tip, Standard	1	\$1,075	DNI
Aurora Window 50-60 Field Generator with Detachable Cable	1	\$5,415	DNI
Aurora V3 System Control Unit Kit	1	\$4,412	DNI
Aurora 4-port Sensor Interface Unit V3 Kit - 4P FW3.000	1	\$2,499	DNI
Flir Grasshopper3 GS3-U3-41C6C-C Camera	1	\$1,450	FLIR
GazePoint GP3 Eye Tracker 150HZ	1	\$1,995	GazePoint
Windows Computer	1	\$500	Dell
Linux Computer	1	\$1,300	Dell

Comment: Surgical tools are not included. Manufacturing materials and tools are not included. **Software List**

PACKAGE	OS/SYSTEM	DEVELOPER	SOURCE
NDI Tracker	Ubuntu 16.04/ROS	Anton Deguet	https://github.com/jhu-saw/sawNDITracker/tree/devel
Point Grey Driver	Ubuntu 16.04/ROS	Chad Rockey	https://github.com/ros-drivers/pointgrey_camera_driver
Experiment Controller	Ubuntu 16.04/ROS	<u>Rui</u>	https://github.com/RuiYinRay?tab=repositories
Gaze Point	Windows/SDK	GazePoint	Offline
GP ROS Wrapper	Ubuntu 16.04/ROS	Rui/Cong	https://github.com/RuiYinRay?tab=repositories
Comment: FYI			

Data Flow

Experiment Work Flow

Before the experiment:

- 1. Prepare cadaver head either by implanting fiducials (preferably non-metallic, but with good CT contrast).
- 2. Obtain a CT scan of the skull.
- 3. Locate the fiducials in CT.
- 4. Find the positions of fiducials in CT using 3D Slicer.
- 5. Perform GDIMLOP registration to sinuses in order to obtain sinus structures.

During the experiment:

- 6. Setup data Collection System
- 7. Prepare the cadaver head with plastic bags and towels (ON A TRAY)
- 8. Drill Holes on the cadaver head thru the adapter
- 9. Screw the EM reference onto the cadaver head
- 10. Run roscore (roscore)
- 11. Run NDI Tracker Node (rosrun ndi_tracker_ros ndi_tracker)
- 12. Run Master Launch and configure the panel (roslaunch sep_master master.launch)
- 13. Use the probe tool to touch and record the positions of the fiducials
- 14. Position the surgeon
- 15. Switch Monitor to Windows
- 16. Calibration for gaze tracker
- 17. Start collecting gaze tracker data
- 18. Switch monitor to Linux
- 19. Project the endoscope stream on the monitor
- 20. Run the gaze tracker node
- 21. Start recording data
- 22. Start the experiment
- 23. Finish the experiment
- 24. Stop recording data

After the experiment:

- 25. Head??????
- 26. Tools??????
- 27. Table?????
- 28. Disposal?????
- 29. Perform registration algorithms(?) to register tool frame to CT frame
- 30. Recognize and delete Aurora data which is out of range
- 31. Map Gaze data to endoscopic video

Aurora:

Positions of Fiducials:

Collected ----> Registration ----> CBCT

Pose of Head:

Pose of Endoscope:

Pose of Suction:

Endoscope Camera:

Gaze:

Collected