
CIS II Coding Documentation

Gianluca Croso Felix Yu

March 2018

The code is separated into two different directories. There is misc, which
contains scripts that do various data processing and data visualization. The
other directory is Models, which contains scripts related to our Neural Networks,
the training procedures, and the testing methods.

1 misc

Misc contains the following scripts, which each do these things:

1.1 create lmdb files.py

This script takes in video files, and outputs lmdb files that contain data that is
compatible as input into C3D.
This script needs directory paths to the following three places:

• directory where the activity clips are located

• directory where the train/val split file is located

• directory where the lmdb files should be outputted to

These should be changed directly within the script.
It is assumed that the activity clips directory contains more subdirectories, each
one corresponding to an activity, and these subdirectories are what contain the
videos (in .avi form).
The lmdb files are written out into the output directory. In this directory, two
subdirectories are formed, train and val, and each of these then contains more
subdirectories, one for each activity. Within this subdirectory are the lmdb files.

To Run: create lmdb files.py

1.2 create res net img lmdb.py

Same as above, but the data is compatible with ResNet instead.

To Run: python res net img lmdb.py

1



1.3 separate phases.py

This script separates whole surgery videos into activity clips based on ground-
truth annotations. The script needs directory paths to:

• directory where the video clips are located

• directory where the video annotations are located

• directory where the activity clips should be outputted to

These should be changed directly within the script.
It is assumed that the video clips are all located directly within the specified
directory. The same goes for the video annotations. When the activity clips are
outputted, subdirectories are created, one corresponding to each activity, and
clips are put in their respective subdirectories.

To Run: separate phases.py

1.4 separate phases.py

This is used to make sure the videos were written properly. If a video was not
written properly or could not be properly loaded, delete the video.

• the directory where the activity clips are located.

These should be changed directly within the script. The text files will be out-
putted to the same directory.

To Run: separate phases.py

1.5 split train test.py

This script outputs two text files, one containing file names of training clips, the
other containing file names of validation clips. In order to do this, the script
needs directory path to:

• the directory where the activity clips are located.

These should be changed directly within the script. The text files will be out-
putted to the same directory.

To Run: split train test.py <percentage of training (as a dec-
imal)>

1.6 play video.py

Plays a video of form .avi.

To Run: play video.py <path to video file>

2



1.7 visualize features.py

Given a numpy matrix containing feature encodings outputted from a model,
where the rows represent inputs and the columns represent the features them-
selves, output a 2-D visual representation of the datapoints.

To Run: visualize features.py <path to numpy file>

2 Models

2.1 Models.py

This script contains the classes for all the PyTorch network models we use in
our other scrpits. This includes the following classes:

• C3D - the C3D model used to train with triplet loss, with normalized
output features and the softmax layer removed from the end

• C3D soft - the C3D model used to train with Cross Entropy Loss, with
the softmax layer included

2.2 train C3D.py

This script should be run to train C3D using triplet-loss. It outputs the weights
of the best trained model according to the validation procedure. It requires a
directory path to:

• the directory where the lmdb datasets are located, as created by cre-
ate lmdb files.py

• the directory where the weights should be outputed.

These should be changed directly within the script.

To Run: train C3D.py

2.3 train ResNet.py

This script should be run to train ResNet using triplet-loss. It outputs the
weights of the best trained model according to the validation procedure. It
requires a directory path to:

• the directory where the lmdb datasets are located, as created by create res
net img lmdb.py

• the directory where the weights should be outputed.

These should be changed directly within the script.

To Run: train ResNet.py

3



2.4 train C3D crossEntropy.py

This script should be run to train C3D using tCross Entropy loss. It outputs
the weights of the best trained model according to the validation procedure. It
requires a directory path to:

• the directory where the lmdb datasets are located, as created by cre-
ate lmdb files.py

• the directory where the weights should be outputed.

These should be changed directly within the script.

To Run: train C3D crossEntropy.py

2.5 train ResNet crossEntropy.py

This script should be run to train ResNet using triplet-loss. It outputs the
weights of the best trained model according to the validation procedure. It
requires a directory path to:

• the directory where the lmdb datasets are located, as created by create res
net img lmdb.py

• the directory where the weights should be outputed.

These should be changed directly within the script.

To Run: train ResNet crossEntropy.py

2.6 get C3D feats.py

Outputs a np matrix file contianing the features for 1000 segments, 100 from
each activity, based on specific weights that are loaded for the C3D model. It
requires a path to:

• the directory where the lmdb datasets are located, as created by cre-
ate lmdb files.py

• the file where the weights are located.

• the output .npy file

These should be changed directly within the script.

To Run: get C3D feats.py

2.7 helpers.py

Contains multiple helper functions as well as the dataset classes used by the
training procedures, which are:

4



2.7.1 ActImageDataset class

This class extends the PyTorch Dataset class and serves as a dataset for a
surgical activity, associated to a single lmdb file, specifically for use with models
where the input is a single image (in our case, ResNet). It loads images in from
lmdb and outputs them in the correct format to be used with pytorch, and can
apply the standard transforms used with ResNet.

2.7.2 ActSegmentDataset class

This class extends the PyTorch Dataset class and serves as a dataset for a
surgical activity, associated to a single lmdb file, specifically for use with models
where the input is a 16-frame segment (in our case, C3D). It loads segments in
from lmdb and outputs them in the correct format to be used with pytorch.

2.7.3 generate val exemplars

Generates a validation dataset for triplet-loss based training procedures. Inputs
are a list num clip per act containing the number of available segments for each
activity as well as an integer num exem per act which is the number of triplets
that should be returned with an anchor in each activity. The latter might be
changed by the function in order to ensure consistency. Returns a list of lists,
where each item is a list of indexes for exemplars within each activity.

2.7.4 get val indexes

Generates a validation dataset for cross entropy loss based training procedures.
Inputs are a list num clip per act containing the number of available images
for each activity as well as an integer batch size which is the number of images
that should be returned in each activity. The latter might be changed by the
function in order to ensure consistency. Returns a numpy matrix where each row
represents an activity and each element within a row is the index for an example
within the activity, as well as a second numpy matrix of the same dimension
with the labels associated to those examples (the labels within a same row are
always the same)

2.7.5 select triplets

Selects triplets for backpropagation in triplet-loss training. Specifically, tests
all possible triplets given the input and chooses only triplets that are consid-
ered semi-hard, that is, the positive example is closer to the anchor than the
negative, but the difference between the distances is less than alpha (a prede-
fined constant margin). Inputs are a numpy matrix representing the features of
multiple example segments (each row is a specific example), the aforementioned
margin alpha (a float), and an integer num segs per act detailing the number
of segments that represents each activity in the matrix. Outputs three 1D
numpy matrices, triplets a, triplets p and triplets n, containing the indexes of

5



the anchors, positives and negatives reprectively in the original feature matrix.
Elements with the same index in these matrices form a single triplet.

6


