
Query By Video for Surgical Activities

Documentation

Gianluca Silva Croso, Felix Yu

May 2018

This document is meant to provide directions on how to use the delivered
code for this project.

1 Dependencies

Code requires python 3.6, along with the following packages:

• numpy

• matplotlib

• cv2

• skvideo

• sklearn

• pytorch version 0.2 or later

• torchvision version 0.1.9 or later

All packages installed with conda or pip install. Version numbers specified only
for packages which basic conda/pip installation might give incompatible version.
In my case, correct version of pytorch obtained using
conda install -c soumith pytorch

2 Data

This section explains how the code expects the data to be organized.

1



2.1 Phase labels

Each surgical phase or activity in cataract surgery was assigned a label from 1
to 10. The following table displays which phases are matched to which labels

ID Activity Name
1 Side Incision
2 Main Incision
3 Capsulorhexis
4 Hydrodissection
5 Phacoemulsification
6 Cortical Removal
7 Lens Insertion
8 OVD Removal
9 Corneal Hydration
10 Suture Incision

2.2 Directory structure and naming conventions

There are multiple places in the scripts where data input/output directories are
hard-coded. These need to be updated to the desired directories for whoever
is running the code. To easily find where these paths are written, search for
comments including the words ”MODIFY IF NECESSARY”. To make sure the
only update to the code is the name of the directories, please use the following
structure:

• For full surgical videos, data directories just contain all the videos within
them. The last three characters of the video name (excluding the exten-
sion) should be a unique numerical identifier.

• Annotations directories contains all annotations text files within them.
Naming follows vid ZZZ.txt where ZZZ is the unique identifier of the cor-
responding video.

• for phase clips, data directories contain sub-directories with names ranging
from ”1/” to ”10/” to represent each phase. Videos are just located inside
those sub-directories. The code will automatically append the name of the
sub-directories when applicable, so that the user only needs to provide the
name of the main data directory. Phase clip are written with the following
convention ”pX nY vid Z” where X is the phase number, Y is incremented
if a particular phase appears more than once in a single video, and Z is
the original surgical video identifier.

• for spatial feature or tool information npy matrices, the data directory
should contain three sub-directories, ”train/”, ”val/” and ”test/”. Within
these, sub-directories from ”1/” to ”10/” to represent each surgical activ-
ities, containing the relevant .npy files. The naming convention for the
tool .npy files should imitate the naming convention for the corresponding

2



phase clip spatial features .npy file, except with ” tools” at the end before
the .npy extension.

• for final feature databases, each part of the data (train, val, test) gets one
database ”train.npy”, ”val.npy” and ”test.npy” along with an accompa-
nying .txt file that maps the database index to the specific phase clip.

2.3 Analysis Outputs

Final outputs include a confusion matrix (image) of the test set and a txt file
that details which clip from the training set was the closest neighbor to each
clip of the test set.

3 Code

The code for the final version of the pipeline is in the Deliverables directory.
All the code in that directory is thoroughly documented, with every function
including a description of what it does as well as the relevant inputs and outputs.
We will also describe here what each file is and how to run it. The scripts
directory contains several scripts for previous versions of the pipeline, along
with architectures and data processing attempts that did not work. The latter
is only included in case someone takes up this work in the future and wants
to refer to what was already tried or use data processing tools that might be
available there, but that code is not as thoroughly documented and we will not
detail all of its files here. The relevant Deliverables directory is subdivided in
the following three sub-directories:

• squeeze net contains the scripts necessary to obtain spatial features using
the squeezenet architecture.

• RNN contains the scripts necessary to train the Recurrent neural network
using squeezenet outputs along with tool data, as well as to generate the
databases containing the final spatio-temporal encodings of the multiple
phase clips.

• utils contains scripts to split surgical videos into phase clips, convert data
to optical flow, generate simulated tool labels, run the analysis on the test
set and vizualize features.

Below we document all the files in these directories. Additional documenta-
tion for each particular function within the files is available in the code itself.
Throughout the code, input and output directories are hard-coded. These can
be easily found and modified, as they always follow comments defining what
they represent and ending with the words ”MODIFY IF NECESSARY”

3



3.1 squeeze net

This directory represends the spatial feature extractor for our pipeline. The net-
work itself was trained by Tae-Soo Kim, and the code in cataract data utils.py
and train image phase balance.py was provided by him. The obtained af-
ter training and used for classification were also provided in the directory in
the form of the file 005 0.699.pkl. We wrote a driver that will obtain spatial
feature representations for clips using the squeeze net architecture and given
weights

3.1.1 squeezenet driver.py

This file is a driver to load squeezenet with pretrained weights and obtain feature
matrix for each phase clip in data dir, writing it out as an npy file to output dir.
Weights file should be given as first system argument when running the driver.
For each clip, one frame will be considered per second of the clip. Features are
outputed as npy files, one for each clip, using the directory structure specified
in the Data section. It requires directory paths to:

• the directory where the phase clips are located

• the directory where the npy feature matrices should be outputed.

These can be updated within the code.
To Run: python squeezenet driver.py <weights file>

3.2 RNN

This directory includes the necessary code to extract temporal features for our
pipeline, particularly through the implementation of an RNN. The input to the
RNN are the feature matrices outputed by squeezenet along with corresponding
tool annotation matrices for the relevant frames for each clip. Each clip outputs
a temporal vector, ultimately saved in 3 npy databases, one for each of the train,
val and test sets. The following files were written by us and are included:

3.2.1 Models.py

This script contains the class for the PyTorch network model we use as the
temporal encoder. This is represented in the class GAP RNN, which details the
architecture of our recurrent neural network.

3.2.2 train GAP RNN.py

This script should be run to train the GAP RNN using triplet-loss. It outputs
the weights of the best trained model according to the validation procedure. It
requires a directory path to:

• the directory where the npy feature matrices for each phase outputed by
squeezenet driver.py are located

4



• the directory where the npy tool annotation matrices for each phase, such
as those outputed by tool labels.py (simulated, see utils section), are lo-
cated

• the directory where the weights should be outputed.

These should be changed directly within the script.

To Run: python train GAP RNN.py

3.2.3 temporal encoder.py

Create database of spatio-temporal features based on either mean averaging
or GAP RNN model using spatial features outputed by squeezenet and tool
features. Saves database as 3 files: train.npy, val.npy and test.npy Each npy file
contains the feature vectors for all examples phase clips in the corresponding
set. Should be run with either 0 or 1 as an argument to identify whether to use
the GAP RNN or simply take the mean of the multiple spatial feature vectors
for a clip to obtain the final spatio-temporal feature vector for the clip. Requires
the following directories:

• the directory where the npy feature matrices for each phase outputed by
squeezenet driver.py are located

• the directory where the npy tool annotation matrices for each phase, such
as those outputed by tool labels.py (simulated, see utils section), are lo-
cated

• the path to the file containing the weights should the RNN be used.

• the directory where the output .npy databases should be written

These should be changed directly within the script.
To Run: python temporal encoder.py <which model>
which model should be 0 to use mean, 1 to use RNN.

3.2.4 helpers.py

Contains multiple helper functions as well as the dataset classes used by the
training procedures, which are:

• SpatialToolFeatDataset class:
This class extends the PyTorch Dataset class and serves as a dataset for
the spatial and tool features of a surgical activity clip. It loads spatial
and tool features npy files with mathing names from the corresponding
directories and outputs them concatenated in the correct format to be
used with pytorch. Used for training the RNN.

5



• SpatialFeatDataset class:
This class extends the PyTorch Dataset class and serves as a dataset for
the spatial features only of a surgical activity clip. It loads spatial features
npy files from the corresponding directory and outputs them in the correct
format to be used with pytorch. Can be used for training the RNN in the
absence of tool features.

• generate val exemplars:
Generates a validation dataset for triplet-loss based training procedures.
Inputs are a list num clip per act containing the number of available seg-
ments for each activity as well as an integer num exem per act which is
the number of triplets that should be returned with an anchor in each
activity. The latter might be changed by the function in order to ensure
consistency. Returns a list of lists, where each item is a list of indexes for
exemplars within each activity.

• select triplets:
Selects triplets for backpropagation in triplet-loss training. Specifically,
tests all possible triplets given the input and chooses only triplets that
are considered semi-hard, that is, the positive example is closer to the
anchor than the negative, but the difference between the distances is less
than alpha (a predefined constant margin). Inputs are a numpy matrix
representing the features of multiple example segments (each row is a
specific example), the aforementioned margin alpha (a float), and an in-
teger num segs per act detailing the number of segments that represents
each activity in the matrix. Outputs three 1D numpy matrices, triplets a,
triplets p and triplets n, containing the indexes of the anchors, positives
and negatives reprectively in the original feature matrix. Elements with
the same index in these matrices form a single triplet.

3.3 utils

Utils contains the following scripts, which are used for multiple applications
related to data processing or analysis:

3.3.1 separate phases.py

This script separates whole surgery videos into activity clips based on ground-
truth annotations of the form
start frame end frame phase
The script needs directory paths to:

• directory where the video clips are located

• directory where the video annotations are located

• directory where the activity clips should be outputted

6



These should be changed directly within the script.
It is assumed that the video clips are all located directly within the specified
directory. The same goes for the video annotations. When the activity clips are
outputted, sub-directories are created, one corresponding to each activity, and
clips are put in their respective sub-directories.

To Run: python separate phases.py

3.3.2 new separate phases.py

This script separates whole surgery videos into activity clips based on ground-
truth annotations of the form
time legend phase
where legend is either start or end. These annotations are a result of newer
annotation software when compared to the previous. The script needs directory
paths to:

• directory where the video clips are located

• directory where the video annotations are located

• directory where the activity clips should be outputted

These should be changed directly within the script.
It is assumed that the video clips are all located directly within the specified
directory. The same goes for the video annotations. When the activity clips are
outputted, sub-directories are created, one corresponding to each activity, and
clips are put in their respective sub-directories.

To Run: python new separate phases.py

3.3.3 convert optical flow.py

Converts phase clips into optical flow videos using cv2 dense optical flow imple-
mentation. Naming is kept exactly the same except in a different directory for
output. The script needs directory paths to:

• directory where the regular activity clips are located

• directory where the optical flow activity clips should be outputted

These should be changed directly within the script.
To Run: python convert optical flow.py

3.3.4 tool labels.py

Based on expected tool presence information for each phase as detailed by Dr.
Vedula, generates simulated tool data. For each available spatial feature ma-
trix, generates tool data for equivalent frames. There are 16 tools and the tool

7



feature vectors contain 16 elements, with a 1 if the equivalent tool is present
and 0 otherwise. The tools are identified as follows:

Tool ID Tool Name
1 Paracentesis blade
2 Keratome
3 Anterior chamber cannula
4 0.12 forceps
5 Calipers
6 Cystotome
7 Utrada forceps
8 Hydrodissection cannula
9 Phaco handpiece
10 I/A handpiece
11 IOL injector
12 Sinsky hook
13 Suture
14 Weckcell sponge
15 Syringe
16 Needle driver

For tool identifier i, the index in the vector is i − 1. If the spatial feature
matrix has size NxF where N is the number of frames considered and F the
feature vector size, the tool feature matrix will have size Nx16. Naming of
output npy files will be identical to input except for ” tools” at the end before
the ”.npy” extension. Assumes pre-existing directory structures as detailed in
Data for phase clips. The script needs directory paths to:

• directory where the spatial features are located

• directory where the tool features should be outputted

These should be changed directly within the script.
To Run: python tool labels.py

3.3.5 visualize features.py

Given a directory containing a ”train.npy” numpy matrix containing feature
encodings outputted from a model, where the rows represent inputs and the
columns represent the features themselves, output a 2-D visual representation
of the datapoints.

To Run: python visualize features.py <data dir>

3.3.6 analysis.py

Using train.npy as database, analyses accuracy of model in test database, pro-
ducing accuracy statistics, printing precision and recall for each phase, and

8



saving a confusion matrix. Prediction is based on majority of num neighbors
nearest neighbors. If there is a tie, closest neighbor gets preference. Also out-
puts a text file that matches each phase clip from the test data with one most
similar clip from the training data. Takes as arguments 0 or 1 to identify which
kind of temporal model was used and the number of nearest neighbors to be
considered for the analysis. The script needs directory paths to:

• directory where the npy databases are located

• directory where the confusion matrix and matchings file should be out-
putted

These should be changed directly within the script.
python temporal encoder.py <which model> <num neighbors>
which model should be 0 if mean was used, 1 if GAP RNN was used without
tools, 2 if GAP RNN was used with tools. The value for num neighbors is
usually 1 (most similar video) but more could be used.

4 Sample Pipeline Run

Now we will describe a sample run of the complete pipeline, from separating
the phase clips to obtaining the final analysis results.

• Depending on the kind of annotation available, decide whether sepa-
rate phases.py or new separate phases.py should be used. Update surgical
video input and phase clip output directories in the script. Run the script.

• Update the input directory to squeezenet driver.py to match the output
of the previous step. Update the desired output directory for spatial fea-
tures. Run the script giving as argument the file containing the squeezenet
weights.

• If real tool annotations are available, format them in the same way de-
scribed in the tool labels.py section. Otherwise, update the input direc-
tory in tool labels.py to the output of the previous step, and update the
desired output directory for simulated tool information in the script. Run
the script.

• Train the GAP RNN model. Update the input directories for spatial and
tool features as the output directories of the two previous steps. Update
the output directory for the weights. Run the script.

• In temporal encoder.py, update the input directory for spatial and tool
features to be the output directories of the second and third step respec-
tively. Update the path to the preferred weights file outputted in the
previous step. Run the script using argument 1 as which model.

• Optionally run visualize features.py with the output of the previous step
as an argument to visualize the feature distribution of the training dataset.

9



• Update the input directory in analysis.py to the output directory of tempo-
ral encoder.py. Update the output directory for the confusion matrix and
text file containing closest matchings. Run analysis.py with arguments 2
1 for which model and num neighbors respectively.

10


