
1

Query By Video for Surgical Activities
Felix Yu, Gianluca Camargo Silva Croso

Mentors: Tae Soo Kim, Haider Ali, Gregory Hager, Austin Reiter and Swaroop Vedula

I. KEY POINTS

How can we devise a way to encode a database of surgical
phase clips such that given a query phase clip, we can search
the database for videos of similar behavior?
53 cataract surgery videos were hand-segmented into 386
phase clips and encoded using a series of neural networks.
We then queried 136 surgical phase clips using a nearest
neighbor framework and found that we correctly classified
71.1% of these queries for its phase.
Our encoding framework is able to discern between clips of
different phases with reasonable accuracy, and forms a base
for querying a database for similar surgical behavior.

Abstract—Currently, providing surgeons feedback on pro-
cedures manually is both time-intensive, and requires expert
knowledge. At least partially automating this procedure would
be very beneficial to surgeons-in-training. One of the first steps
towards using video data to produce feedback is to be able to
encode encode spatial and temporal information of a clip. We
would expect that such an encoding would be able to at least
guarantee that clips of the same phase within the surgery have
more similar encodings than those of different phases. Here, we
propose a pipeline to create such an encoding, and evaluate
its accuracy in surgical phase classification based for cataract
surgery clips. The classification is based on nearest neighbors
within the encoding feature space. The pipeline consists of a
convolutional neural network meant to extract spatial features
followed by a recurrent neural network, which also uses tool
annotations, to extract temporal information. With this pipeline,
we attain a phase classification accuracy of 71.1% in a testing
dataset of videos that were not used at any step of the pipeline
training or validation.

II. INTRODUCTION

Currently, providing feedback for surgeons manually after
an operation is both costly and difficult. This is due to the
large time commitment required by those giving feedback,
as well as the scarcity of experts with enough experience
to have accurate and useful comments. Therefore, one of
the goals of analyzing surgical workflows is to automate the
process of providing meaningful feedback post-operation to
the surgeons, allowing for both training of novice surgeons
and improving or diversifying the skill of expert surgeons.
However, this goal has constraints. Because the methods
developed for delivering post-operational feedback should
be executable for many, if not all, hospitals, the data used
to provide the commentary needs to be easily obtained.

Felix Yu and Gianluca Camargo Silva Croso are Undergraduate Students
at the Johns Hopkins University.

T. Kim, H. Ali, G. Hager and S. Vedula are with the Johns Hopkins
University.

Manuscript from May 10th, 2018.

Therefore, instead of using information that is measured by
special devices that do not exist in most hospital settings in
order to perform surgical workflow analysis, we target our
analysis to use videos of the surgery, as well as tool label
annotations. In our case, tool label annotations are defined
to be information detailing which tools are present in each
timestep of the videos.
Using videos presents a variety of challenges. Because there
is no standard protocol on how a video of the surgery should
be recorded, there is high variability between surgical videos
in terms of video quality, the overlay used, the angle in which
the surgery is filmed, lighting conditions, etc. This is why
we have also decided to use tool label information as well.
Because the tools used in specific surgeries stay relatively
consistent for different doctors and hospitals, we are able to
introduce a factor of consistency that allows us to guide our
encodings and account for the variability in the videos.
The question then follows: given this information for an
operation, what processing methods should be applied in
order to automatically output novel feedback to the surgeon?
In order to begin solving this, we would need existing
commentary to base our feedback off of. Therefore, a
database of these videos must first be obtained, and expert
feedback should be generated manually to serve as a ground
truth for possible commentary. It is also difficult to provide
feedback on the entire surgery in one shot. Because a surgery
comprises of multiple phases, segmentation of the video into
its respective phases should be done in order to separate out
the various different activities the surgeon does within the
operation. Feedback can then be produced for each of these
phase clips, and makes our problem much more feasible.
Next, there needs to be a way to tell if two clips are ”similar”
to each other in terms of which phase is currently being
performed and the method of execution. This is so that we
can build a database of commentary that resides within a
feature space based on the encoding. Once a new surgery
takes place, the video can be segmented. Finally, by taking
the resulting query clips and finding where it resides within
this feature space, we can look at nearby commentary through
a nearest neighbors method and construct novel feedback for
the specific phase.
This paper focuses on third sub-problem, namely creating a
method of encoding phase clips into a vector in some feature
space to allow for nearest neighbor querying. Because our
method aims to generate feedback towards specific phases
in a surgery, our work is specific to the type of surgery
performed. We analyze cataract surgical videos, in which
surgeons replace the damaged lens of an eye with an artificial
one. We assume ground truth segmentation of the videos
are available, as well as information on which tools are

2

currently in the clips at each time step of the clip itself. Fig
8 in the supplementary figures section of the appendix lists
all 10 possible phases that may occur during the cataract
surgery, and maps an integer between 1 and 10 to these
phases. For simplicity sake, we will refer to the phases based
on the numbers from here on out. Our method adapts two
existing neural network frameworks, SqueezeNet and LSTM
networks [1], [2], to capture spatial information found within
the videos, as well as temporal information of both the
videos and tool information. After the networks encode this
information into feature vectors, we use a nearest neighbors
method with a Euclidean distance metric to query for similar
clips in the database. We show by doing so, we are able
to discern which phase each query clip belongs to with
reasonable accuracy.

III. RELATED WORK

There has been a significant amount of recent interest in var-
ious applications of automated surgical analysis, particularly in
the computer vision community. Studies have different specific
focuses, from phase classification to tool detection, but they
all aim to improve automatic interpretation of surgical data.
Recent work by Lea et al. [4] demonstrates the possibility
of automatic segmentation and phase recognition in a dataset
consisting of endoscopic cholecystectomy videos Convolu-
tional Neural Networks to extract an encoding of spatial and
temporal features, and also fusing tool information to improve
phase classification.
The 2017 Cataract Grand challenge [12] resulted in several
methods for automatic tool annotation for cataract surgery, and
work by Kim et al. [11] indicated that such annotations can
also be obtained reliably through crowdsourcing, which means
they other methods attempting video based analysis should be
able to rely on tool annotations as auxiliary data.
Additionally, recent Work by Gao et al. [8] has demonstrated
the effectiveness of a query-by-example approach using kine-
matic data, and work by Zhao et al. [5] suggests methods for
fusing spatial, temporal and different kinds of data in a pipeline
consisting of more than one traditional neural network model.

IV. METHODS

In this section we describe the methods that we used to build
our pipeline. We describe the concepts of Convolutional and
Recurrent Neural Networks as well as different Loss functions
we used.

A. Convolutional Neural Network

Convolutional Neural Networks are extremely popular in
the computer vision domain currently. As a result, there is
an abundance of existing architectures designed to encode
the spatial information found in an image. This network
architecture is based on convolutional filters to learn spatial
features on a progressively more general scale. To learn
a large amount of generalizable features, it is common to
stack multiple layers of convolutional filters and max-pooling
operations when designing a model.

B. Recurrent Neural Network
Recurrent Neural Networks are network architectures well

suited for dealing with sequential information of varied length.
For this reason, they are often used to encode time-based
information. The work of Zhao et al. [5] describes at length
how RNNs work as well as several variations of possible RNN
models. RNNs have a hidden state h at each time step that is
determined by the current input and the previous hidden state
h1. The following equation describes the activation of a vanilla
RNN unit as shown in [5].

ht = σ

(
W

(
xt
ht−1

))
yt = σ (Vht)

Here σ is a non-linear activation function, usually the standard
logistic function or hyperbolic tangent. xt is the input at time
t. yt is the output at that same time step, and W and V
are the network parameters. This allows the network to retain
information from the entire sequence of inputs. This archi-
tecture, however, is ineffective for long time step sequences
due to the vanishing gradient problem. An improvement to the
vanilla RNN unit was the development of LSTM (Long Short-
Term Memory) units. This architecture uses three gated cells
to retain more information about the different hidden states
and properly propagate errors through hundreds of thousands
of time steps.

C. Cross-Entropy Loss
Cross-Entropy is one of the most commonly used loss

functions for Neural Network classification tasks. It increases
as the probability assigned to each classification label diverges
from the true label. Formally, this loss is defined as

LCE =

10∑
i=1

bip(yi) p(yi) =
1

Z
exp

{
li
}

Where bi is a binary variable that takes on values either 0
or 1, 0 if the class of It is not i, and 1 otherwise. Z is the
normalizing factor that makes sure the probabilities sum up to
1.

D. Triplet Loss
Triplet loss was introduced by Schoff et al. for the purpose

of face recognition and clustering [3]. The triplet loss function
takes in a triplet which consists of the features of three
different exemplars (normalized to be unit vectors), known as
the anchor, the positive, and the negative (denoted ~fa, ~fp, and
~fn. The anchor and the positive encodings belong to the same
class, while the anchor and the negative belong to different
classes. Formally, the triplet loss is then computed to be

LT =
[
||fa − fp||2 − ||fa − fn||2 + α

]
+

As can be seen, this loss is positive if the Euclidean distance
between the anchor and the positive is not smaller by the
distance between the anchor and the negative by a value of at
least α. Therefore, this loss tries to reduce distance between
feature vectors of the same class, while increasing distance
between feature vectors of different classes.

3

V. EXPERIMENT

In this section we describe the complete pipeline, illustrated
in Figure 1. Our method can be broken down into two three
steps. First, we use a spatial convolutional neural network
in order to analyze each frame of a video clip. The goal
of this network is to capture information such as the tools
that are present in each frame of the clip, as well as the
state and appearance of the eye. Next, we use a recurrent
neural network in order to process this information along with
tool presence information across the temporal domain. This
produces a singular encoding that represents the entire clip.
Finally, we set up our database of surgical clips and use a
nearest neighbor approach to classify new surgical query clips.
Implementation details and model specifics can be found in the
Appendix.

Fig. 1. The flowchart for the pipeline. A query clip video will have the
spatial and temporal features encoded through two neural networks, and then
the database will be queried for similar clips.

A. Spatial Convolutional Neural Network (SCNN)

Our problem for this portion of the network is phrased
as follows: Given a clip of a surgical phase, how many of
the frames can we successfully classify as the correct phase,
independent of the classification of any other frame?
Let P = p1, p2, . . . , p10 be the 10 phases that can occur during
cataract surgery. The legend detailing which pi corresponds
with each phase can be found in the appendix. Furthermore,
let It denote the RGB image at timestep t ∈ Z, [1, T] for some
phase clip V. Because V is a video of a singular phase in the
cataract surgery, we can assume that for all timesteps t, the
phase of the image at that timestep is pi, where i corresponds
to one of the possible phases found in cataract surgery. We
train a neural network that tries to correctly classify as many of
the RGB images as possible across all of our training videos.
In order to to do this, we decided to base our architecture off
of the SqueezeNet architecture [1], with the primary motivator
stemming from the low amount of parameters the network has.
This makes training much faster, as well as gives us a simpler
architecture for the simpler problem of a 10 way classification.
The SqueezeNet architecture is built off of fire modules, which
is described in the original paper as convolutions with 1x1
filters to squeeze the inputs, followed by convolutions with

1x1 and 3x3 filters to expand it. SqueezeNet puts the input
image through eight of these fire modules, while also taking
a global average pooling after the fourth and eighth modules.
By the end of this, the image has gone through a series of
transformations and is now represented by matrix Ht, with
dimensions 13×13×512. From there, one final convolutional
layer occurs, transforming the dimensions to 13 × 13 × 10,
and this is passed through a global max pooling across the
first and second dimensions to achieve a 1× 1× 10 vector, ~lt.
This vector is then used for phase classification of the image.
We train the neural network for phase classification using cross
entropy loss.
Although we need the phase classification portion of the
network in order to properly train our model, we are more
interested in the feature vector encoding given to the image
before this classification occurs. We obtain this feature vector
encoding by taking Ht and running a global max pooling
across the 1st and 2nd dimensions in order to collapse Ht

into a vector ~st. We take ~st to be the feature encoding output
of the network, given an image It. Figure 2 gives the overview
of the SCNN process.

Fig. 2. The structure of the SCNN. The image at each timestep, It, is fed into
this network to get the corresponding ~st For training purposes, we also need
to predict the phase classification of the image, which is done by generating
~lt to predict p.

B. Temporal Recurrent Neural Network (TRNN)

All images in video V are fed through the SCNN, and
we end up with a matrix representation S with dimensions
T × 512. Each row t represents the encoding outputted by
the SCNN at timestep t. Furthermore, we bring in the tool
label information. There are 16 unique tools used in cataract
surgery, and thus the tool label information is formatted as a
T × 16 dimension matrix A, and each element in the matrix
Tij ∈ {0, 1} represents whether that specific tool j is present
within the current frame i. We concatenate S with A to form
the input into the TRNN, denoted as C.
The problem the TRNN tries to solve is the following: How
can we capture information across the temporal domain while
simultaneously making sure encodings that come from clips
of the same phase are similar, while clips of different phases
are dissimilar?
To solve the first part of the problem, we introduce a basic
recurrent neural network architecture with LSTM nodes [2].
Each timestep in C is fed into the LSTM layer (as a vector
ct), and all outputs are saved. Afterwards, we take the average
of these outputs in order to gain a summary of the temporal

4

information over the entirety of the video. We do this rather
than just take the last output of the LSTM, which theoretically
contains information over all frames of the video, because
frames near the beginning are very underrepresented in the
final output of the LSTM. This produces a single vector of
length 512, which we then reduce down to a feature vector
with length 128 through a fully connected layer. This vector
is then normalized to a unit length 1, which becomes our final
video encoding, called ~f . Figure 3 give a basic overview of
how this vector ~f is generated.

Fig. 3. The structure of the RNN. We first individually feed each timestep into
the LSTM layer, and then take the average of the outputs across all timesteps.
This average is then fed into the fully connected layer, giving us our output
feature encoding ~f .

To solve the second part of the problem, we use the loss
function known as triplet loss [3] in order to increase the
Euclidean distance in feature encodings of clips of different
phases. This gives us an encoding for our phase clips which
meets our requirements, without performing explicit phase
classification during this training step.

C. Nearest Neighbor Querying

Now that we have a method of encoding phase clips V
into feature vectors ~f through the SCNN and TRNN, we can
construct a database of feature encodings that correspond to
the phase clips that were used during the training of the neural
networks. Each of the 382 training clip is passed through the
SCNN/TRNN pipeline and encoded. These encodings make up
our database to be queried. Afterwards, given a query clip, we
can pass it through the pipeline as well to encode it, and look
through the database to find similar clips through a nearest
neighbors approach using Euclidean distance as a similarity
measurement.

VI. DATASET

The training and evaluation of our pipeline was done on a
novel dataset generated by those involved with the project. 66
entire cataract surgery videos were taken from 1 expert and
multiple trainees at the Wilmer Eye Institute, and ground-truth
phase segmentation annotations were generated by members of
the project. These annotations were provided in text files, and
came in two separate formats. We were also given information
to simulate tool tip annotation information, since these could
not be labeled in time for the completion of this project.
For each phase, we were told the probability of each tool

appearing, as well as what fraction of the total time the
tool would appear for if it shows up. This information can
be found within the supplementary figures of the appendix.
Of the 66 whole videos, 45 of them were used to train
our machine learning pipeline and also became our cataract
surgery database. 8 of them were used to validate the accuracy
of our models during the training procedure. Finally, the
remaining 13 videos were used as a test dataset, in which
we passed the clips generated from these videos through the
already trained pipeline and queried the database for clips that
are ”similar”.
Given the videos and annotations, we did the following pre-
processing. From the ground truth segmentation, we broke up
the whole surgery videos into phase clips, and sorted the clips
based on which phase they belonged to. On average, each
video yielded 9 phase clips, giving us a total of 382 phase
clips for training, 71 phase clips for validating, and 136 phase
clips for our final testing. The full breakdown for how many
clips are in each of the phases can be found in figure 8 of the
appendix.
At the same time, we also simulated tool tip annotations A.
For each clip, we look at the phase that the clip belongs to,
and generate the annotations as follows.

1) For each tool, Check to see if the tool deterministically
appears. If it does, check to see for what fraction of the
duration it will be in the clip (call this fraction d).

2) If the tool does not deterministically appear, randomly
decide whether the tool will appear for the specific clip
or not with a fixed probability.

3) If the tool does show up, randomly sample the duration
d to be between 0.1 and 0.4.

4) Choose a random start point within the clip, making sure
that this start point is no later than d away from the end
of the clip.

5) Set matrix A to contain the tool from the start point for
the length of the duration d.

VII. RESULTS

We first visualize our database consisting of training encod-
ings on a 2D plane, as seen in figure 4. This is done using
Principle Component Analysis to reduce the dimensions of
the encodings for each phase clip from 128 to 2, and then
plotting these top two principle components. This allows us
to qualitatively visualize the effectiveness of using triplet loss
in order to separate phase encodings that belong to different
classes, and cluster together phase encodings that belong to
the same class.
Furthermore, we quantitatively evaluate our pipeline by ana-
lyzing the classification accuracy on the test dataset, which
is the dataset that the model did not see during the training
procedure. We define the following method of classification.
Given our database of phase clip encodings, we can send our
test dataset through the SCNN/TRNN pipeline in order to
encode them as well, and ”query” the database through the
nearest neighbors method. We then classify each test clip to
be the same class as the clip that is closest to it in the database.

5

Fig. 4. Visualization of our database features generated through the pipeline
that was trained on both video clips and tool annotations, colored according
to the phases. Distinct clusters can be seen, although there are regions of
overlap.

In other words, given that our query clip is q, and and p(i)
denotes the phase of query clip i,

p(q) = p(argmini||~fq − ~fi||2)

We look at overall accuracy of our pipeline, as well as the
precision and recall for each individual phase. Furthermore,
we also look at the confusion matrix generated to see which
phases are most commonly getting mixed up.
Aside from training our pipeline on both videos and tool
annotations, we also trained our pipeline to classify phase
using only video information to quantify the usefulness of
including tool annotations within our training procedure as
well. In the end, we obtained a classification accuracy of 0.356
using only video information, while our accuracy increases to
0.711 when using both videos and tool annotations. Figures
5, 6 and 7 summarize the results.

VIII. DISCUSSION

By looking at Figure 4, we can see that our pipeline
which uses triplet loss creates distinct clusters for each phase.
Some phases, such as phase 1 (side incision) and phase 4
(hydrodissection), seem to have small regions of overlap.
However, distinct areas are still shown.
By looking at figures 5, 6, and 7, we can see that we
achieve our best results from using both video and tool
label information. Accuracy, precision, and recall improve
for each phase with this addition, with the accuracy of the
model trained on both tools and videos to reach 71.1%,
while the accuracy of the model trained using only videos
reached 35.6%. Furthermore, there were noticeable jumps
in both precision and recall in phase 4, going from 44.4%
precision and 15.4% recall to 91.7% and 84.6% recall. Similar
improvements can be observed for phases 7 and 10 as well.
This is to be expected, since tool annotation information is
highly separable based on phase. As a matter of fact, if we
were to train a model purely on tool annotation information,

Fig. 5. Table that shows precision and recall across the various phases. The
first two columns correspond to the model trained solely on phase video clips,
while the second two columns correspond to the model trained on both phase
video clips and simulated label annotations. Both precision and recall improve
across all phases when tool labels are introduced.

Fig. 6. Confusion matrix of the classification of cataract phase across the
10 different phases, trained using only video information. We achieve an
accuracy of 0.356, significantly lower than the classification trained on both
video information and tool annotations.

our classification accuracy would rise even further. However,
the ultimate goal is to create an encoding that captures
spatio-temporal information. By using tool label information
only to steer the encodings towards proper classification rather
than replace the spatio-temporal information, we improve our
ability to cluster together the encodings based on phase while
maintaining the information we desire within the encodings
themselves.
In our confusion matrix, it can be seen that the majority of
incorrect classifications come from phase 1 (side incision)

6

Fig. 7. Confusion matrix of the classification of cataract phase across the 10
different phases, trained using both video information and tool information.
Compared to training with only video information, our classification accuracy
is much higher, at 0.711. Note that most of our mistakes come from phases
1 and 8.

and phase 8 (OVD removal), while accuracy in other phases
remain high (above 60% accuracy for all other phases).
Phase 1’s misclassification is spread out through a variety
of different classes. This may be due to the brevity of clips
for the phase itself, which does not give our model enough
information to create an sufficient encoding. Regardless, the
side incision is one of the more trivial portions of the surgery,
and is not one subject to heavy inspection. Phase 8 is heavily
classified as phase 6. This classification error has multiple
explanations: The most prominent can be seen by observing
the information used to simulate tool annotations, found in
figure 9. As can be seen there, there is high chance that the
tool annotations that are generated for these two phases are
identical. This can lead to misclassification. Another reason
why phase 6 is preferred is due to the larger number of
training samples for phase 6. We hope that by obtaining more
training samples across all phases, which will help define
our clusters better, and obtain real tool annotations, which
will reduce the issue of having identical annotations between
phases, the accuracy will increase.

IX. CONCLUSION

In short, we have shown that including tool annotations
is useful in phase classification and creating a meaningful
encoding of videos. Furthermore, we achieved reasonable
accuracy in phase classification using our method, and showed
that our current encoding pipeline of SCNN/TRNN trained
using triplet loss successfully creates separable regions for
each of the classes. Finally, we identified shortcomings within
our model, and proposed that having more training data as
well as real tool annotations may help rectify these issues.

ACKNOWLEDGMENT

The authors would like to thank the entire Cataract Group
for their support and mentorship, including Tae Soo Kim, Dr.
Haider Ali, Dr. Austin Reiter, Dr. Swaroop Vedula, Xinyi Chen
and Anand Malpani.
We would also like to thank Dr. Gregory Hager and the stu-
dents in his lab for their assistance and feedback, particularly
Robert DiPietro and Michael Peven.
The data in this study was collected with support from the
Wilmer Eye Institute Pooled Professor’s fund awarded to Dr.
Shameema Sikder.
Finally, we would like to thank the instructor and Teaching
Assistant of the Advanced Computer Integrated Surgery course
at Johns Hopkins University, Dr. Russel Taylor, Ehsan Azimi.

REFERENCES

[1] F. Iandola, S. Song, M. Moskewicz, K. Ashraf, W. Dally J., K. Keutzer,
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <
0.5MB model size, ICLR Conference, 2017.

[2] S. Hochreiter, J. Schmidhuber, Long Short-term Memory, Neural Com-
putation 9(8):1735-1780, 1997

[3] F. Schoff, D. Kalenchenko, J. Philbin, FaceNet: A Unified Embedding for
Face Recognition and Clustering, CVPR Conference, 2015.

[4] C Lea., J. H. Choi, A. Reiter and G. D. Hager, Surgical Phase Recog-
nition: from Instrumented ORs to Hospitals Around the World, M2CAI
workshop, 2016.

[5] R. Zhao, H. Ali and P. van der Smargt, Two-Stream RNN/CNN for Action
Recognition in 3D Videos, 2017.

[6] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, Learn-
ing Spatiotemporal Features with 3D Convolutional Networks., 2015
IEEE International Conference on Computer Vision (ICCV), 2015.
doi:10.1109/iccv.2015.510.

[7] S. Chopra, R. Hadsell, and Y. Lecun. Learning a Similarity Metric
Discriminatively, with Application to Face Verification. 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR05), 2005. doi:10.1109/cvpr.2005.202.

[8] Y. Gao, S. S. Vedula, G. I. Lee, M. R. Lee, S. Khudanpur, and G. Hager.
Query-by-example surgical activity detection. International Journal of
Computer Assisted Radiology and Surgery 11, no. 6 (April 12, 2016):
987-96. doi:10.1007/s11548-016-1386-3.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. doi:10.1109/cvpr.2016.90

[10] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager. Temporal
Convolutional Networks for Action Segmentation and Detection. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. doi:10.1109/cvpr.2017.113.

[11] T. S. Kim, A. Malpani, S. S. Vedula, A. Reiter, S. Sikder, Advancing
Surgeon Training through Data Science: Pilot Study of Cataract Surgical
Tool Annotation through Crowd Sourcing, Association for Cataract and
Refractive Surgery Annual Meeting. April 13-17, 2018.

[12] CATARACTS: Challenge on Automatic Tool Annotation for cataRACT
surgery, 2017, https://cataracts.grand-challenge.org

7

APPENDIX A
SUPPLEMENTARY FIGURES

Fig. 8. Information on each phase of cataract surgery. The 2nd column
provides a legend for the action that is performed during each numbered
phase, and the following three columns give the number of clips that are in
each of the three datasets.

Fig. 9. Information given to simulate which tools appear will appear in each
phase of the cataract surgery. The tools are numbered 1 through 16. In the
second column, the fraction within the parentheses mark the duration that
the tool will appear for, while in the third column, the fraction denotes the
probability that the tool maybe used. Empty spaces mean that no tools apply
under the specific context.

APPENDIX B
IMPLEMENTATION DETAILS

All code was written with Python, using the CV2 and
skvideo.io packages for video processing, scikit-learn for
nearest neighbors, and PyTorch for neural network implemen-
tations.

A. SCNN Model

The SCNN, once again, is based off of the SqueezeNet
architecture [1]. SqueezeNet consists of multiple fire modules.
Each module contains a series of s1 1×1 convolutional filters
to ”squeeze” the information followed by a set of e1 1 × 1
and e3 3 × 3 filters to expand. In the standard architecture,
there are 8 fire modules. The number of filters in each of the
modules is given by the table:
SqueezeNet is implemented as follows:

Fig. 10. Information on the number of filters in each fire module. Note that
in the SqueezeNet paper, these modules are labeled ”fire2” through ”fire9”.

1) A convolutional layer with 96 7× 7 filters
2) fire2 through fire4
3) Max pooling
4) fire5 through fire8
5) Max pooling
6) fire 9
7) Convolution with n filters, where n is the number of

classes. In our case, n is 10.
8) Global Average Pooling
9) Softmax.

We take PyTorch’s implementation of SqueezeNet from their
pretrainedmodels package, already pre-trained on ImageNet.
We then replaced the last convolutional layer with one that
has 10 classes rather than 1000, and fine-tuned the model
to classify phase on cataract surgery images. The output
dimension of the feature vector of SqueezeNet is 512.

B. TRNN

The TRNN is relatively simple. Because the output dimen-
sion of SqueezeNet is 512 and the dimensions of the tool
annotations are 16, the TRNN takes in inputs of size 528,
over some time-series T . the TRNN is structured as such:

1) An LSTM layer that outputs a 528 dimensional vector.
The input at each time-step is fed into this layer and
saved.

2) A global average pooling across time-steps.

8

3) A fully connected layer that outputs a feature vector of
length 128.

4) A vector normalization that turns the output vector into
unit length. This is done for triplet loss.

This model is implemented in PyTorch, and then trained from
scratch by us.

C. Nearest Neighbors

The Nearest Neighbors querying is implemented through
sklearn.neighbors. A Nearest Neighbors object is fit to the
database of training video encodings with a Euclidean distance
metric. Query encodings are then read in, and the nearest
neighbors are grabbed from this fitted object.

APPENDIX C
CIS II COURSE REQUIREMENTS

This section includes final details for the evaluation of this
project in the context of the Computer Integrated Surgery II
course.

A. Deliverables

The deliverables of this project were updated twice during
the semester in agreement with our mentors in order to make
this project more realistic and adapt to an unexpectedly low
accuracy of the spatial CNN in early versions of the project.
The final deliverables as agreed upon by our mentors were the
following:

• Minimum
1) Design Document documenting the code and model

description
2) Create a working, well documented pipeline to

generate video descriptors given a surgical clip of
an activity.

3) develop a similarity metric that can discriminate
between clips of same and different activities.

• Expected
1) Validate our model by analyzing similarity scores

activity clips in our dataset with target accuracy
30% on single-frame extractor, 60% after including
temporal features

2) Submit a paper-style report documenting our find-
ings that could be used as first draft of a manuscript
for publication

• Maximum
1) Use tool tip annotations (simulated if real are not

available) to improve classification accuracy
All of the deliverables above were achieved successfully.

B. Distribution of work

The SCNN based on SqueezeNet was provided by our men-
tor Tae Soo Kim. All other aspects were implemented equally
and together by Felix Yu and Gianluca Croso. Documentation
of code was mostly done by Gianluca, while Felix focused
more on writing the report.

C. Plan modifications

1) Deliverable changes: Our initial deliverables included
updating the pipeline to classify surgeon skill and even pos-
sibly creating a method to rank different surgeries in terms
of skill. The inclusion of these reflected an overly optimistic
belief that phase classification would not be too difficult with
the pipeline we had in mind.
After a few meetings with Dr. Haider Ali, who specializes in
computer vision and later became one of the mentors of this
project, we realized that it was an unrealistic goal. He believed
that a better approach was to train for phase classification
exclusively with expert surgeons in order to decrease the intra-
class variability of the examples, and then implement fine-
tuning using associative loss to classify the novice surgeons.
This would be a more complex form of phase classification,
but the encoding would hopefully intrinsically capture some of
the differences between novices and experts thus making skill
classification easier as future work. We updated our deliver-
ables accordingly, removing skill classification and introducing
associative loss as our maximum deliverable.
As we worked on the project, most of our attempts at the
spatial feature extractor (the first part of the pipeline) were
unexpectedly unsuccessful (we will describe these attempts
in the next subsection), which severely delayed our progress.
After we eventually found a reasonably good architecture
with the help of our mentor Tae Soo Kim, and implemented
the temporal encoder, we were getting clearly non-random
results, but the accuracy was still insufficient. By then we had
realized our dataset was very difficult to classify, partly due
to the lack of standard in filming, which was causing a large
intra-class variation far beyond what we would have expected
between experts and novices. That led to the of using auxiliary
data in the form tool labels, which should be helpful in
identifying phases, and to the final update to our deliverables,
which substituted the implementation of associative loss for
the implementation and fusion of tool label data. As we did
not have them readily available and did not have the time to
obtain it, we simulated that data based on the knowledge of
our mentors for which tools should appear in which phases,
for which duration and with which probability.

2) Unsuccessful approaches: We had many unsuccessful
attempts at designing the spacial feature extractor. Thankfully,
the input data for the temporal extractor was significantly
simpler (a matrix of feature vectors instead of a video) and
therefore our design for that step was significantly more
successful. The first model we used for the spatial feature
extractor was called C3D [6]. It is a deep network that includes
many layers of 3D convolutions to extract spatiotemporal
information over short clips. We trained it using Triplet Loss. It
is a very complex model that we believed would be able to go
beyond learning just the spatial features but also capture some
movement information if trained over 1 second segments of the
clips. The results were unfortunately only barely better than
random. We thought the loss function might be the problem,
and attempted training the model with the more commonly
used Cross-Entropy Loss, with no improvement. We then
attempted training on individual frames using ResNet [9], a

9

complex but widely used and generally very successful model
for image interpretation, also without significant success using
either loss function. Our final unsuccessful attempt happened
when we were exploring the possibility of converting the data
to optical flow, and training a network that fused a ResNet with
an LSTM layer over one second clips of optical flow data. We
converted the data and trained the model but that approach also
failed to produce adequate accuracy. However that happened
around the same time as we were successful with SqueezeNet,
at which point we moved on to the temporal encoder.

D. Challenges and Lessons Learned

As mentioned in the plan modifications, we initially under-
estimated the difficulty of the phase classification problem in
this dataset. Our initial plan to use C3D as the spatial feature
extractor did not work well, and we spend several more weeks
than originally planed trying to improve the accuracy of the
first part of the pipeline. The model later suggested by our
mentor Tae Soo Kim, SqueezeNet, was much simpler than
our initial model, but obtained significantly better results.
This taught us two important lessons. First, that it is not always
a good idea to use a very complicated model from the start.
Simpler models are easier to implement and faster to train, and
they can give us insight on what is the right kind of complexity
to introduce in order to obtain better results. Second, we
should not have spent so much time trying to improve an
incomplete pipeline. Had we completed the temporal encoder
before spending as much time trying to improve the spatial
feature extractor, we might have obtained valuable insight on
the shortcomings of the pipeline as a whole.
A third important lesson was learned when we presented
partial results to Dr. Hager’s lab in early April. We had
not given enough attention to the inherent difficulties of the
dataset early on. The way the videos were filmed was not
standardized, which created large differences in clips that
should be of the same class and inherent similarities in videos
that were of different classes but part of the same surgery. It
would have been a good idea to test our pipeline on a simpler
dataset in order to evaluate its strengths and weaknesses before
attempting such a difficult task.

E. Future work

We consider that, at the end of the course, the following are
the immediate steps to be taken with this project:

• Review manuscript to submit for publication either in
PlosOne or JAMA Open.

• Work will be continued by cataract group with sparse
involvement by Felix and Gianluca.

• Future work to improve results and usefulness of project
includes training model on larger dataset, investigating
skill related encodings, and obtaining more fine-grain tool
annotations.

F. Code and Documentation

A zip archive containing the all the code for this project is
available in the project Wiki page along with a complete user’s

manual / documentation guide detailing how to use each and
every file in the final version of the pipeline. The code itself
of the files used in the final version of the pipeline is also
well documented with every function including a description
along with expected inputs and outputs. Both the code and
the documentation guide are uploaded in the ”Reports and
presentations” section of the wiki under the item ”Project code
& documentation” right after this final report.

