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I. Introduction 
A. Background 

In the past century, the average lifespan of an individual has increased significantly due to 
medical advances and improved healthcare accessibility. However, with this increase in average 
lifespan comes an increase in the probability of random oncogenic (cancerous) mutations 
occurring. Studies show that the median age of cancer diagnosis is 66 years and that over 75% of 
all cancers are detected in patients past the age of 55. 

In past 5 years in the United States, cancer accounts for 22.5% of all total deaths. As such, cancer 
diagnosis, prognosis, and treatment are becoming increasingly important medical problems. 
Currently, there are several main forms of cancer treatment. These are surgery, radiotherapy, and 
chemotherapy. There are also many initiatives supporting research and development 
targeted/precision therapy, hormone therapy, and stem cell transplantation. 

One of the most common types of treatment is radiation therapy. Almost 35% of cancer patients 
have radiation therapy as a component of their primary treatment plan. Radiation therapy 
involves bombarding cells with high energy electromagnetic radiation, such as x-rays, in order to 
cause cell death by damaging the DNA of the cell and preventing cell division. However, 
radiotherapy has several drawbacks. High energy waves are not selective and can kill healthy 
cells in the neighborhood of the target location. If the target location has sensitive organs and 
tissue, such as the reproductive system or spine, then any side effects could cause major patient 
mental and physical trauma. 

 

Figure 1: Nasopharynx IMRT treatment 
Source: http://images.iop.org/objects/med/talkingpoint/4/2/1/imrt2_1602.jpg 

One improvement modern radiotherapy implements is 3-dimensional radiotherapy. 3D 
radiotherapy (3D-RT) involves taking a 3D image of the tumor and region of interest, mapping 
the organ and tumor contours and designing radiation beams to conform to tumor shape and 

 



patient anatomy. This results in increased accuracy and consistency. Another improvement is 
intensity modulated radiotherapy (IMRT). IMRT delivers precise radiation doses to specific 
regions using computer controlled linear accelerators based on patient morphology and 
oncologist expertise. An example can be seen in Figure 1. 

B. Problem 

Many decisions and treatments that oncologists and surgeons have to make are dependent on the 
collected patient data. For example, 3D-RT and IMRT requires contour models of the tumor 
region. Therefore, any low-quality contour maps will increase the risk involved for the cancer 
patients. The current issue with data collection is that it involves many manual human involved 
steps. There is also a lack of quality and integrity validation for collected data sets. Some 
examples of manual steps include splicing contour slices together, contouring regions, collection 
of patient assessments, and patient treatment plans. Since data collection is a repetitive and tiring 
process, it can be prone to human error. Technicians could build contour models that are missing 
slices and physicians could input incorrect patient variables. 

There exists some research into creating generalized standards for oncologic data collection 
based off of previously collected data and standardized variables, however, there is almost no 
existing software that has an active approach to the problem. We aim to be able to build a 
framework to allow a module and active approach for integrity checking of mapped organ 
contours to detect these anomalies. By using updated and live clinical databases combined with 
this framework software, our system allows the user to implement unique integrity checks that 
checks various patient data for validation. 

II. Technical Approach 
We developed a code framework that allows users to identify potentially anomalous data using 
their own integrity algorithms. The framework also allows for simple statistical analysis of the 
results. A generalized description of the automated workflow for our framework can be seen in 
figure 2. First, we query the database and isolate the appropriate patient data to be validated. 
Next, we pass the data to the validation modules. The validation modules analyzes and returns 
whether the sample is anomalous or not. The collected results are then analyzed using various 
statistics, such as measuring the true/false positive and true/false negative rates. 

In figure 3, we can see a basic UML diagram that describes the actual framework code base. 
There is a main interface that takes the users decisions as command line arguments. The interface 
passes the specific user case to the engine. The engine queries the database for the appropriate 
data, which is then passed to a module manager. The module manager selects the specific 
integrity module that the user wants for validation and passes the data to it. It then returns 
whether the data was an anomaly back to the user. If the user wants to run statistics, the engine 
also calls a statistics manager. There are many other supporting objects and relationships that are 
not covered for sake of visual simplicity. 

 



 

Figure 2: Generalized Framework Workflow 

The framework is designed to allow for modular insertion of various detection rules. The code 
base has a generalized class format for integrity modules for the user to follow. The user can call 
the integrity module superclass for their integrity module. The only method they need to 
implement is an algorithm to determine whether the data is valid or not. The data is passed in as 
a parameter to the method. The method then returns a validation value (usually true/false). The 
framework allows users to sample individual patients and detection methods or test over a 
battery of tests at once. 

 

Figure 3: Simplified Framework UML Diagram 

Beyond the integrity algorithm, there is one other area that the user may want to modify. This is 
the specific type of data passed down through the framework. Since different databases will 
contain different patient information, there a specific section the engine the can be modified to 

 



select the data. It can also be easily converted to a method which can be written outside the 
framework in a seperate user generated file and then passed in as a command line argument. 
Figure 4 demonstrates one possible example of data from the database, a contour mask for the 
oncospace database. 

 

Figure 4: Example of contour mask 

We selected to use Python for two main reasons. First, we wanted to conform with the oncotools 
package developed previously by the McNutt Lab. Our database querying uses prebuilt code 
from the package. We also wanted to be able to have our code stay incorporated as part of the 
oncotools package for future users. Second, for user convenience. Python has a very large 
community that supports lot of public prebuilt packages available that do a lot of the integrity 
checking algorithms that users may want to use. 

 

Figure 5: Expanding oncotools documentation to include our framework 

To demonstrate the functionality of the framework we developed some of our own detection 
modules as well as inserting pre-existing error modules. The framework combined with our own 

 



algorithms allowed us to explore areas where anomalies occur. They can also serve as examples 
for future users. 

III. Results and Significance 
We were able to create a framework that allows for the insertion of various detection algorithms. 
Most of the process is automated, as long as the location of the detection algorithms is added to 
the manager class for the framework data can be passed to the algorithm. The user only needs to 
write the actual detection method with a structured input and output format, give it a label, and 
place it in the same location as other existing modules. 

 

Figure 6: Example of table of errors found for individual patients 

We were able test our framework with several of our own detection algorithms in order to 
validate that it works. As seen in figure 6 running the framework on a sample of the database 
each data passed into the detection modules will return if an error has been detected or not 
detected. The example shown in figure 6 is the accuracy of the contour maps for the first 10 
patients of the database. As can be seen above, there is about a 6% chance for a contour map to 
be have errors in contiguity using a simple extant algorithm. Another example is a simple drug 
dosage check. We were able to go through the patients and determine if certain patients had 
errant dose grids, such as dose grids with no data. Testing demonstrated that the algorithm 
worked, but after running through the database, we were unable to find patients with incorrect 
grids. However, we were able to determine patients with no grids. We noticed that some integrity 
checking modules took significantly longer to run than others. 

As a general rule, we were able to query the database for all 1275 patients and run them through 
the framework to determine the existence of anomalous contour maps using the detection 
algorithms currently implemented as well as determining which patients had anomalous dosing 
maps and questionable assessments. For detection modules that were more complex, such as 
voxel analysis, we narrowed the sample size according to the runtime of one patient analysis. 

  

 



IV. Conclusion 
The framework we have built will allow oncologists to automatically determine patients with 
anomalous data. They will be able to implement their own algorithms, whether it be simple 
statistical analysis or machine learning, and find the patients of interest to them. They will also 
be able to actively check new patients using the framework. We have shown that our framework 
works with several examples. By using the implemented framework, the quality of data used by 
physicians to make decisions should increase and better the lives of radiation therapy patients.  

 



V. Management Summary 
Responsibilities: 

Vincent worked on framework design, implementation, and testing. Daniel worked on anomaly 
detection methods, framework implementation, and testing. 

 

Deliverables: Accomplished vs. Planned 

Minimum: 

- Working framework that allows for modular insertion of new integrity checks 
- Documented API to develop new integrity checks  

Expected: 

- Incorporate existing errant detection modules into our working framework 
- Implement new anomaly detection modules 

Maximum: 

- Develop and implement numerous new integrity checks 
- Implement compatibility packet to allow other programs access to results easily 

 

We were able to accomplish all of our minimum and expected deliverables. Our framework 
allowed for the insertion of new integrity checks and is well documented for others to develop 
their own integrity checks. Our framework has previous existing errant detection modules 
integrated as well as new anomaly detection modules we developed as well. For maximum 
deliverables, our code is implemented so that it is easily compatible with other programs and 
allows easy access to results. For example, many results can be output and written into a text 
document. We were able to implement our own novel integrity check modules for the maximum 
deliverable but were not able to implement as many integrity check modules as we would have 
wanted to initially due to time restrictions and computational limits. 

 

What might be next: 

The Oncospace group wants to implement their own error detection modules. The next step 
would be to implement these error detection modules. We also would like to enable physicians to 
analyze more types of erroneous data by expanding the scope of our framework. Further 
improvements include increasing the flexibility of framework to enable more complex input and 
output, such as a scale of the likelihood of a data point to have errors. Finally, we would like to 
optimize of the code for efficiency for running over a large database such as implement 
parallelism and improve query structures. 

 



 

What we learned: 

Our initial design wanted to be very flexible and robust. However, the complexity added a lot of 
complicated relationships to the framework, make the code harder to implement. Even with 
structured communication between team members, there can be a lot of confusion and errors due 
to the framework structure. We found the more flexible we tried to make the framework, the 
harder it became to implement and the more cases we needed to take into account. We also 
learned that certain detection algorithms we wanted to implement were highly computationally 
intensive and a balance of memory usage and speed are required for optimization. Additionally, 
traversing across a database is highly memory intensive and a balance of memory usage and 
speed in required for optimization and testing. 

VI. Acknowledgements 
We would like to thank our mentors Dr. Todd McNutt and Pranav Lakshminarayanan for 
providing us with their guidance throughout the project period. We would also like to thank Dr. 
Russell Taylor and Ehsan Azimi for reviewing our work in Advanced Computer Integrated 
Surgery. 

  

 



VII. References 
1. Risk Factors: Age - Age and Cancer Risks. Retrieved from 

https://www.cancer.gov/about-cancer/causes-prevention/risk/age 
2. Cancer Facts & Figures 2018. (n.d.). Retrieved from 

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-fi
gures-2018.html 

3. Cancer Incidence by Age. Retrieved from 
http://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence/age#heading
-Zero 

4. Data Integrity Systems for Organ Contours in Radiation Therapy Planning (submitted) 
5. Gaffney, D. K., King, B., Viswanathan, A. N., Barkati, M., Beriwal, S., Eifel, P., . . . Bosch, 

W. (2016). Consensus Recommendations for Radiation Therapy Contouring and Treatment 
of Vulvar Carcinoma. International Journal of Radiation Oncology*Biology*Physics, 95(4), 
1191-1200. doi:10.1016/j.ijrobp.2016.02.043  

6. McNutt TR, Benedict SH, Low DA, Moore K, Shpitser I, Jiang W, Lakshminarayanan P, 
Cheng Z, Han P, Hui X, Nakatsugawa M, Lee J, Moore JA, Robertson SP, Shah V, Taylor R, 
Quon H, Wong J, DeWeese T, Using Big Data Analytics to Advance Precision Radiation 
Oncology, International Journal of Radiation Oncology • Biology • Physics (2018), doi: 
10.1016/ j.ijrobp.2018.02.028. 

7. Nicholas, Hannah. Reviewed by Timothy J. Legg. (2017) The top 10 leading causes of death 
in the United States.  Retrieved from 
https://www.medicalnewstoday.com/articles/282929.php 

8. Radiation Therapy for Cancer. (n.d.). Retrieved from 
https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy/radiation-fact-sheet 

9. Smith, B. D., Haffty, B. G., Wilson, L. D., Smith, G. L., Patel, A. N., & Buchholz, T. A. 
(2010). The Future of Radiation Oncology in the United States From 2010 to 2020: Will 
Supply Keep Pace With Demand? Journal of Clinical Oncology, 28(35), 5160-5165. 
doi:10.1200/jco.2010.31.2520 

10. Sun, Y., Yu, X., Luo, W., Lee, A. W., Wee, J. T., Lee, N., . . . Ma, J. (2014). 
Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal 
carcinoma patients receiving intensity-modulated radiotherapy. Radiotherapy and Oncology, 
110(3), 390-397. doi:10.1016/j.radonc.2013.10.035 

11. Types of Cancer Treatment. Retrieved from 
https://www.cancer.gov/about-cancer/treatment/types  

 



VIII. Technical appendices 
Appendix A: Code Repository Link 

All code developed for this project, documentation, and images collected can be found in the 
GitHub repository at https://github.com/necroteddy/oncotools-master 

The repository is private, so access must be granted by specific members of the team. The 
repository is private because it is a branch of the original oncotools github repository, which is 
also private. 

Appendix B: Description of Files 

We implement the framework structure in Python. Python is used because it allows for simple 
portability and OS compatibility. It also has many existing packages that can be used to augment 
and improve the framework. The framework is based off of oncotools, a prebuilt library by the 
McNutt lab for querying the oncospace database.  

DataIntegrity.py 
The main driver for the entire code base. The user runs this program with command line 
arguments and the program runs the correct corresponding tools. 

engine.py 

The Engine class initializes a database connection and the queries required to navigate the 
database. The engine class also create instances of the Manager and Stat classes and contains 
functions that allows user to pass commands to operate the classes. 

Manager.py 

The Manager class contains references to all existing anomaly detection modules, and enforces 
strict input requirements when a detection module is called. When new detection modules are to 
be added to the framework adding a reference to the location of the detection modules as well as 
the input required into the manager file will connect the detection module to the framework. 

Statistics.py 

The Statistics file contains classes that allow for managing the results of implemented integrity 
checks and the compiling of various statistics. It also contains functions for reading and writing 
data to file or printing result to screen. 

Integrity_Module​.py 

The Integrity Module class is the basic integrity superclass. It enforces consistency in the 
structure of implemented integrity modules to be handled by the framework. It is written such 
that it will not significantly hinder the implementation of modules but makes sure that the 
implemented module will be able to receive input from the framework and return values that the 
framework can handle  

 



Example integrity modules: 

check_contiguity_extent.py 

Module that checks that a mask is contiguous using projections along x, y, and z axes. Intakes a 
mask and returns validity of input mask with message/ 

check_contiguity_voxels.py 

Module that checks​ that a mask is contiguous using region neighbor-crawling technique. Has 
option to use surface mask or volume mask. Volume mask requires significantly more run time 
and computational power. 

check_dose_grid.py 

Module that checks​ Dose Grid Data for basic standard errors 

 


