Anomaly detection for treatment planning and a learning health system in radiotherapy

Group 4: Daniel Yuan, Vincent Qi Mentors: Dr. Todd McNutt, Pranav Lakshminarayanan Professor: Dr. Taylor

What is radiation therapy?

Treatment utilizing high energy waves (x-rays, gamma rays, etc.) to bombard, shrink, and kill cancer cells by damaging DNA and preventing cell division.

It is projected that by 2020, at least 35% of cancer patients (7 million individuals in the US) will have radiotherapy as part of their primary treatment.

Image from: http://www.mpsd.de/irt/IRT.html

What are the problems?

High energy waves are not selective. They will kill both cancer cells and healthy cells.

Killing healthy cells can cause many other health issues.

Even well targeted treatments can have a variety of side effects, from short term nausea to long term permanent disabilities.

Current solutions

Current radiotherapy plans involve mapping organ contours in order to better understand patient anatomy, which allows for increased accuracy and consistency.

This used to be done completely manually. Some automation is now involved in the workflow, but there are still margins of error that can have a significant effect on the future treatment of patients if not detected.

Image from: http://www.acoustic-neuroma-brain-tumour.org/english/acoustic-neuroma-cyberknife.php

Now what?

Integrity checking for mapped organ contours to detect anomalies.

Use clinical databases to develop and test models for different classes of contour integrity checks.

Image from: https://sites.google.com/a/wisc.edu/neuroradiology/image-acquisition/the-basics

Our Project Goal

Create the framework for a learning health system that can that can identify potentially erroneous data with statistical anomaly detection. The system will allow the implementation of unique integrity check classes from the user.

Overall Goal

The final goal is to improve the quality and integrity of clinical data in order to minimize the risk for radiation overdose for patients.

Deliverables

Minimum	 Working Framework that allows for modular insertion of new integrity checks Documented API to develop new integrity checks
Expected	 Implemented existing errant detection modules into working framework Implement new anomaly detection modules
Maximum	 Develop and implement numerous new integrity checks Implement compatibility packet to allow other programs access to results easily

Dependencies

Dependency	Plan to resolve	Estimated resolution Date	Plan B
Access to Database	Coordinate with Dr. McNutt and Pranav	February 26th	Try to find other databases to work with
Access to previous code	Request code base from Pranav	February 26th	Implement and develop own modules
Access to computation power	Coordinate with Dr. McNutt and Pranav	Unknown	Work with smaller sample sizes as a proof of concept

Framework (alpha concept)

Management Plan

- Time management
 - > Weekly Friday meeting with mentors
- Responsibilities

Daniel	Vincent
Framework implementation	Framework implementation
Model construction	Statistic analysis & output
New Module design	New Module design

- Project close-out
 - ➤ Final poster presentation

Timeline

	February	March	April	May
Preliminary preparation				
Project proplosal & presentation				
Database access				
Acess to code base				
Familiarization with resourses				0
Framework design				
Framework prototyping				
DOCUMENTATION				
Structure building				
Base Module Implementation				
Existing errant detection modules				
Statistical/output module				
New detection modules	1			0
Framework polishing & extension				
Complex detection modules				
Interface streamlining				
Output modules				
Database experimentation				
Final presentation				

Milestones

Accomplishment	Estimated Date (dd/m/yyyy)	Current Status
Presentation	20/2/2018	Right now!
Proposal	26/2/2018	To Do
Framework design	15/3/2018	To Do
Existing module implementation	25/3/2018	To Do
Statistical module	7/4/2018	To Do
First new module	7/4/2018	To Do
More complex modules	23/4/2018	To Do
Final presentation	11/5/2018	To Do

Acknowledgements

Our mentors, Dr. McNutt and Pranav

Our professor, Dr. Taylor

Our TA, Ehsan Azimi

References

Cancer Facts & Figures 2018. (n.d.). Retrieved from

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html

Data Integrity Systems for Organ Contours in Radiation Therapy Planning (submitted)

Radiation Therapy for Cancer. (n.d.). Retrieved from

https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy/radiation-fact-sheet

- Smith, B. D., Haffty, B. G., Wilson, L. D., Smith, G. L., Patel, A. N., & Buchholz, T. A. (2010). The Future of Radiation Oncology in the United States From 2010 to 2020: Will Supply Keep Pace With Demand? *Journal of Clinical Oncology*, 28(35), 5160-5165. doi:10.1200/jco.2010.31.2520
- Sun, Y., Yu, X., Luo, W., Lee, A. W., Wee, J. T., Lee, N., . . . Ma, J. (2014). Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy. *Radiotherapy and Oncology*, *110*(3), 390-397. doi:10.1016/j.radonc.2013.10.035

Questions?