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Abstract: 
 
 
Big Clinical Data Analytics as a primary component of precision medicine is discussed, ] 

identifying where these emerging tools fit in the spectrum of genomic and radiomic research. A 

learning health system (LHS) is conceptualized that utilizes clinically acquired data with 

machine learning to advance the initiatives of precision medicine. The LHS is comprehensive 

and can be used for clinical decision support, discovery, and hypothesis derivation. These 

developing uses can positively impact the ultimate management and therapeutic course for 

patients. The conceptual model for each use of clinical data, is however different, and an 

overview of the implications is discussed. With advancement in technologies and culture to 

improve the efficiency, accuracy and breadth of measurements of the patient condition, the 

concept of a LHS may be realized in precision radiotherapy. 

 
1. Introduction 

 
 
The goal of precision medicine is to improve overall patient care and determine when and how to 

personalize patients’ treatments. Currently, this is guided by a physician’s understanding of the 

patient’s condition by drawing from their experience to align the specifics of care to the patient. 

Guidelines1,2 assist in the overall pathways for specific diseases, but, for the most part, precision 

medicine is performed with finer granularity than the guidelines provide. 

 

A learning health system3-5 (LHS) is a concept where quantifiable diagnostic, treatment and 

outcome data are captured from a continuous stream of patients and placed in a knowledge base. 

Knowledge is accessed by analytical tools that employ statistical and machine learning 

algorithms to present trends and make predictions and causal inferences on outcomes. As more 
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patient data are accumulated, the system continues to learn and improve on its models and ability 

to make specific predictions for individual patients. 

 
Evaluating the possibilities of a LHS, it is important to recognize the difference between 

predictive modeling to assist in clinical decisions and knowledge discovery of the underlying 

mechanisms or causes of particular outcomes. In decision making, we decide on the most 

appropriate intervention for the patient which may or may not be guided by complete knowledge 

of the underlying biological mechanisms. New discovery however, must uncover the biological 

understanding or derive hypotheses that may be further validated under more controlled studies. 

Clinical data complements pathology, genomics and radiomics by providing details of the 

treatments and outcomes of patients for the advancement of precision medicine. 

 
2. What is Big Clinical Data? 

 

The ability of bigclinical data6,, to represent the real world with minimal bias, to accumulate 

assessments over time, to be linked with other databases, to be used and reused, and to enable a 

multidimensional understanding, should all be considered to unlock the potential. Clinical data 

represent prior experience from patients and are captured through a multitude of methods, but 

limitations of our current protocols and pathways result in only a small fraction being used to 

make clinical decisions. For machine learning and statistical algorithms to take advantage of the 

entirety of the available data, medical records must adapt to support continuous feature 

extraction. Clinical data generally have a number of complications not found in typical cross- 

sectional study datasets. For example, clinical data exists in forms of free text to three- 

dimensional volumes to structured data elements all with longitudinal sampling. Clinical data 

also suffer from selective sampling, missingness, and measurement error. 
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Aside from lifestyle covariates, clinical data contains patient and disease status, treatment and 

symptom management, clinical and quality of life (QoL) outcomes, adverse effects, and survival. 

The key for enabling access is to extract meaningful information or features and store them in 

standardized ways.7
 

 

Naturally, the level of precision in measuring outcomes dictates the quality of subsequent clinical 

conclusions. For instance, in current practice, a recurrence of a patient’s cancer may be recorded, 

but often without the specific location. This limits our understanding of whether or not the 

recurrence was coincident with the radiation treatment. Also, the measurement of a patient’s 

clinical condition depends on available time and resources. For example, xerostomia can be 

scored by the clinician, evaluated through patient questionnaires or measured with controlled 

stimulation methods, each with a corresponding increased time and cost. 

 
Longitudinal assessment of patient status requires careful feature extraction. One can evaluate 

acute changes in toxicity such as taste disturbance or mucositis during treatment to understand a 

patient’s ability to cope with treatment. Alternatively, evaluating longer term toxicities provides 

a measure of permanent damage. Time to recovery of a particular function may also be 

measurable, as initial injury likely has different causal attributes than recovery of various 

radiation related toxicities. 

 
Unlike standard cross-sectional studies, where treatments are binary and represent case and 

controls groups, radiation therapy involves a three-dimensional dose delivered over multiple 

days, yet protocol standards extract simplistic dose-volume features as efficient measures of 

treatment plan quality. Dose Volume Histograms (DVHs) leave out useful information, and thus 

are insufficient on their own to support precision medicine.8  A DVH assumes each location 
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within a region is equally sensitive to radiation and equally responsible for biological function. 

Advanced methods of extracting dose features and patterns would enable a better understanding 

of the impact on patient outcomes.9
 

 
3. The learning health system and predictive modeling 

 
 
A common goal of traditional statistical modeling is the discovery of the underlying mechanisms 

or cause of outcomes. Breiman10 compares a “data model” where a statistical model is assumed 

to describe a relationship and validated with the data to an “algorithmic model” where the 

mathematical model that relates the input variables to the outcomes is computationally 

determined through  machine  learning.  Both  approaches  have  benefits  and flaws:  the  “data 

models” are usually hypothesis-driven, yet may not reflect the complexity of the true process, but 

nonetheless enable improved understanding of the system. The “algorithmic models”, on the 

other hand are hypothesis-generating presenting superior predictive accuracy, yet make it 

challenging to uncover the dominant input variables and/or causal attributes. 

 
Medical information is very complex and often aggregated into features that can mask important 

underlying details. Such dimension reductions are necessary, but risk being insufficient. A good 

example is the selected points on a DVH, where we have essentially reduced three-dimensional 

dose in a region to a single value of dose or volume. This data reduction may have a negative 

impact on the ability to build a model to predict organ function or disease control after treatment 

that may have spatial dependence. It is not easy to proactively determine whether this type of ad 

hoc feature will preserve or discard useful relationships between the features and outcomes. 

Developing and applying dimension reduction strategies that usefully preserve true relationships 

in the data may improve normal tissue complication models.11
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Considerations for predictive models must include the purpose of building them, whether they 

are to be used for decision support or for discovery of new knowledge. There is more than one 

tool and selecting the right one to apply to the clinical question and purpose will be critical for 

making more precise patient care decisions. 

 
3a. Decision support 

 
 
The goal of decision support is to provide the most appropriate intervention for the patient12 and 

not necessarily to discover new knowledge. This begs the question of which outcome prediction 

models should be selected with what accuracy requirement. 

 
The key to selecting the more performative model is understanding the decision and intervention 

to be made. For example, if the intervention is to use a feeding tube to prevent weight loss for 

head and neck cancer patients undergoing treatment with radiation and chemotherapy, then it 

may not be necessary to know what combinations of toxicity caused the weight loss since the 

intervention is intended to treat the symptom instead of its underlying cause. Alternatively, if it 

is understood that, for a particular patient, taste disturbance would likely cause excessive weight 

loss, then the intervention may be to modify the radiation treatment to minimize the taste 

disturbance, or to refer to a nutritionist to consult on nutritional support. 

 

Figure 1 depicts a framework for decision support3 where at some time point in the care of a 

patient a decision needs to be made. The inputs to the predictive model include the facts about 

the patient and potential interventions. Outcome predictions such as risk of a particular toxicity 

or probability of local disease control are presented to the clinician and patient with the specific 

attributes most influential to the prediction. These outputs could then be used to assist the 
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decision making whether it be selection or change in the treatment course or an intervention to 

improve symptoms. 

 
An evaluation of the dominant attributes of a specific prediction must consider an understanding 

of the individual patient and the existing knowledge of underlying causes. Predictive models 

often do not separate causation from association. Thus, interventions that depend on treating a 

causal attribute must consider the limitations of the predictive models. 

 
3b. Discovery and hypothesis derivation 

 
 
A LHS also provides the opportunity to extend knowledge through discovery and hypothesis 

derivation. In essence, the goal is to both understand features most predictive of outcomes and 

uncover the underlying causes. 

 
Figure 2 depicts a framework for discovery using the LHS. The process is to find features of the 

patients that most influence an outcome by generating predictive models and cross validating 

them with the available data to maximize prediction accuracy. In this approach, iterative 

exploration of an unlimited set of features seeks out those that maximize the predictive accuracy. 

Post-validation, a review of the relevant features can support hypothesis derivation and help 

uncover discoveries that can be further studied. 

 
Aside from predictive modeling, cause and effect relationships between features and outcomes 

are important types of hypothesis and are often the most scientifically relevant. These types of 

hypotheses are most relevant for decision support, since making decisions based on purely 

associational criteria amounts “to an irrational policy of managing the news, and results, in 

practice, in replication failures and poor recommendations.”(D. Lewis)13 Identifying cause- 

effect relationships entails systematically adjusting for selection effects and confounding bias, 
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using methods such as g-computation,14 propensity score matching,15 and inverse probability 

weighting.16 In addition, under strong assumptions inferences about causal directionality 

underlying associational relationships between multiple variables are possible. 

 
Though there is a large effort in machine learning and statistics to identify cause and effect 

relationships from observational data, all causal hypotheses generated by such methods must 

ultimately be validated by formal randomized controlled trials. 

 
3c. What’s missing? 

 

 
 
Both decision support and discovery are limited by the knowledge contained in the database. For 

example, one institution may have ancillary care pathways that differ from another institution’s 

such that these differences impact patients’ outcomes. If institution A utilizes a speech 

pathologist for routine swallow therapy and institution B does not, their outcomes for swallow 

function may be different. If the details on a patient’s adherence to swallow therapy are not 

contained in the database for either institution, then the treating institution would be an aggregate 

variable that might correlate with a swallow function outcome. 

 

This missing of data also manifests itself when models are validated between institutions. If a 

model is built from only institution A’s data and validated with institution B, the unknown 

information may dominate and the validation will fail. Alternatively, if a model is built with 

both institutions’ data, and institution selection is the most dominant variable, there may be little 

difference relative to having two models, one for each institution, since the prediction will 

mostly depend on the treating institution. 

 

This has implications.When using the LHS for decision support the goal is to have the most 

accurate prediction, and that may happen with models built using only patients treated at the 
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institution where the patient is to be treated. For discovery, however, the goal is to uncover 

underlying mechanisms, and for this, inter-institutional validation becomes important and 

completing missing information in the data is crucial to uncovering this new knowledge. 

 

In addition to outright missing information, the knowledge base is limited within the norms of 

clinical care. With radiation treatments, for example, only the variability of the dose distributions 

present in the knowledge base is available.17 If a particular anatomical region of every patient 

received the same dose, then there is no possibility of learning the impact on the outcome of 

varying dose to that region. Since patients are treated with similar dose goals in planning, the 

data will inherently subdue the importance of the known dose goals, while potentially being 

unethical to deviate from them. In essence, “Without deviation from the norm, progress is not 

possible.”(F. Zappa)18 As the effects of radiation on patients are explored, consideration of the 

existing knowledge and how much of it is inherently included, and thus subdued, is critical in 

any interpretations. Furthermore, as we trend towards standardized clinical guidelines, we risk 

further limitations on the knowledge contained in the data and on our ability to personalize care 

in the context of improved quality and safety. 

 

4. Examples 
 
 
4a. Treatment plan quality prediction 

 
 
An early example of using big data tools in radiotherapy is the concept of geometry-driven or 

knowledge-based treatment planning (KBP).19-24 KBP aligns with the LHS model in that it 

provides actionable predictions of dose goals for planning and continuously learns as more 

treatment planning data is accumulated. 
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KBP analyzes a plurality of prior treatments to discover patient-specific anatomical features that 

precisely correlate to high quality radiation dose delivery. With the model-based dose 

predictions, KBP can be used for treatment plan quality control (QC) or outright plan 

automation. In its generalized form, KBP makes use of established machine learning techniques 

such as supervised inference engines to discover relevant geometric variables and their 

correlation to patient-specific dose prediction. 

 

While KBP is already in routine clinical use at some institutions for the purposes of automated 

planning,25 one of the most important contributions from KBP has come in the combination of 

knowledge-based plan QC with a cooperative group clinical trial to assess the frequency and 

clinical severity of sub-optimal treatment planning in a diverse multi-institutional data set.26
 

 

4b. Incorporating toxicity outcomes and clinical intervention 
 

The prediction of toxicities is also critical to a patient’s ability to tolerate treatment and their 

long-term QoL. An example is weight loss prediction using a classification and regression tree 

for head and neck cancer patients.27 Two predictions at different time points were developed to 

predict weight loss at 3 months post-treatment: 1) during planning using patient demographic 

and dosimetry data, and 2) at the end of treatment using additional on-treatment toxicities and 

patient-reported QoL data. During planning, the top two predictors of weight loss were tumor 

site and higher doses to the masticatory muscle, a potentially modifiable factor. By the end of the 

treatment, when radiation-induced toxicities started to present, patient-reported oral  intake, 

tumor site, and dose to combined parotid were more predictive. Early identification of high risk 

for excessive weight loss may inform interventions such asfeeding tube placement, referral to 

speech pathologist for swallow function evaluation and exercise, or frequent monitoring early 

after treatment. 
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Another example is in the prediction of radiation-induced xerostomia for head and neck cancer 

patients. A wide range of clinical, demographic, and dosimetric factors wereevaluated by the 

algorithm and subsequently cross-validated by the accruing data. In this example, low dose bath 

to combined parotids, and intermediate level irradiation to submandibular glands alongside 

clinical factors of chemotherapy, HPV infection, feeding tube use, baseline BMI were identified 

as crucial for patients prone to severe xerostomia. Downstream conditional predictive factors 

including age, alcohol use, age and smoking are also attributable. 

 

The LHS allows a comprehensive exploration of predictors for a variety of treatment related 

toxicities beyond the single organ DVH and simple normal tissue complication models, and 

further, bridging all other clinical and patient factors into an all-encompassing prediction model. 

Evidence from such models warrant the foundation for clinical decision support for the 

prevention and/or management of toxicities. 

 

The exploration of dose distribution patterns and the inter-organ dependencies may be critical to 

precision medicine. Early studies show the spatial dependence of dose on xerostomia in the 

parotid glands,28-30 anddysphagia across the swallowing muscles.9,31 Further exploration of these 

spatial and multi-organ dependencies will be enabled by the LHS and may improve our 

knowledge of the impact of radiation on normal function.32
 

 

 
 
5. Genomics, pathology and radiomics 

 
 
 
 
At a higher level, Radiomics, Genomics and Pathology are patient-specific data that are 

subjected to feature extraction in clinical practice and for research. 33-35
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Radiomics is a clear example where a portion of a diagnostic image is identified and features of 

the voxel values: density, texture and gradients are calculated and presumed to reflect 

characteristics of the specific tissue being analyzed. These features are used to predict disease 

response to treatment or toxicity. The features themselves do not necessarily reflect underlying 

mechanisms or status of the tissue, but they might sample characteristics that reflect underlying 

differences between patients. 

 
In contrast, Pathology has had a long history of feature extraction where cell type, grade levels 

and differentiation are characterized from biopsy slides, and the disease is classified with staging 

and grading models.36 This history has provided a means of communicating complex image and 

tissue characteristics and is used to classify patients for both research analysis and clinical 

decision pathways.37
 

 
Genomics is another very complex data set used to seek out known features that are associated 

with particular outcomes. The dominant research looks to discover genetic predisposition to 

disease or response to treatment. Other work suggests there may also be a predisposition to 

radiation toxicity based on genomic signatures.38 The LHS offers an opportunity to explore 

genomicsin much greater detail and assist in uncovering genomic patterns that influence 

outcomes which would otherwise be impossible to discover. 

 
Uncovering how the features derived from images, pathology and genomic signatures can inform 

clinical practice or discovery but ultimately relies on accurate measures of outcomes and 

treatment information. Thus it is the combination of the clinical data with these measures that 

will advance their ability to provide precise treatment options for our patients. 

 
6.   Discussion 
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Just as machine learning is being used to drive autonomous vehicles, is it reasonable to expect 

similar successes in radiation oncology? At this point, self-driving cars focus on the rules of the 

road and respond to immediate detection of obstructions in their local environment. They, 

however, exhibit difficulty in defensive driving where they must weigh the risks of the unknown 

and anticipate what might happen. Radiation oncology, though precise in the treatment, presents 

a similar situation with a few rules of the road and acute observations, but may be dominated by 

unknowns and patterns of defensive practice. As such, our expectation for the foreseeable future 

should be one of improved risk/outcome prediction as a supplement to physician-based clinical 

decision making. 

 
The key to success is to uncover and measure as many of the unknowns as possible. Is a future 

possible in which we accurately measure the critical aspects of patient’s outcomes and 

treatment? Computerization of healthcare is advancing rapidly and the societal culture evolving 

from having smartphones amplifies the likelihood that good measures of the continuous patient 

condition will only advance.As outcome measures improve, radiation oncology must do its part 

to accurately archive treatments in easily retrievable form, adhering to standard nomenclatures. It 

should be possible to query features of the patient’s history, physical exam, radiographic studies, 

laboratory tests, and “delivered” dose for any patient from our clinical archive without 

significant processing. It should be part of the practice to be good stewards of the data and 

accurately record three-dimensional delivery while capturing the clinical data, appreciating that it 

ultimately will contribute to the LHS. 

 
Presentation of a patient’s condition is currently conveyed in mostly text and is typically 

presented in the absence of population based information. Disease and patient specific 

presentation through modern human computer interfaces coupled with population based statistics 
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can highlight how well a patient is doing in the context of their disease peers, and in itself aid in 

individualized decision making. Advances in such patient presentations offers the framework to 

present risk and outcome predictions in a form that is actionable. 

 
The vision is a future where data is instinctively collected and each patient is provided a 

prediction of their disease outcomes and complications on the backdrop of their peer populations 

with treatments tailored to an individual’s needs and sensitivities. Continuous learning of this 

LHS will open insights that involve patterns in data far more complex than our traditional 

evidence-based methods can uncover and will open the flood gates of knowledge. 
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The conceptual model for decision support versus discovery with big clinical data analytics is 
different, and an overview of the implications of these differences is discussed in the context of 
precision medicine. 

 

Figure 1: Decision support framework to make predictions of outcomes of individual 
patients. The models, derived from the knowledge base, use the facts and clinical 
options/variables in making the predictions which are presented to the physician to assist in 
decision making. 

 

Figure 2: Hypothesis generation utilizes predictive modeling to maximize the prediction 
accuracy to uncover specific features of the patients and their treatments most correlated 
with an outcome. The features are derived from the raw clinic data. 
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Figure 1: Decision support framework to make predictions of outcomes of individual patients. The models, derived 
from the knowledge base, use the facts and clinical options/variables in making the predictions which are 
presented to the physician to assist in decision making.
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Figure 2: Hypothesis generation utilizes predictive modeling to maximize the prediction accuracy to uncover 
specific features of the patients and their treatments most correlated with an outcome. The features are 
derived from the raw clinic data.
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The conceptual model for decision support versus discovery with big clinical data analytics is 
different, and an overview of the implications of these differences is discussed in the context of 
precision medicine. 


