

Intraocular Robotic Interventional Surgical System (IRISS): Mechanical Design, Evaluation, and Master–slave Manipulation

Jason T.Wilson | Matthew J. Gerber | StephenW. Prince | Cheng-Wei Chen |Steven D. Schwartz | Jean-Pierre Hubschman | Tsu-Chin Tsao

> Presented by Ali Ebrahimi Group 7

International Journal of Medical Robotics and Computer Assisted Surgery, 2017

Project title: Steady-Hand Eye Robot Control Algorithm Based on Force-sensing Tool Information

- Implementing a variable admittance control scheme to increase the robot resistance when the sclera force is increasing a fixed upper level threshold
- Using the expert's force-depth variation curve to apply another variable admittance control which helps operator to manipulate the eye
- 3. Applying these control schemes on the Eye-Robot and performing several experiments with different subjects

Paper Selection

Title: Intraocular Robotic Interventional Surgical System (IRISS): Mechanical Design, Evaluation, and Master–slave Manipulation

- Describes the mechanical design of the IRISS
- Discusses the hardware–software interface and the method of control
- Evaluates the performance of the robot both mechanically and in a clinical trial

CAD model for IRISS

Key Result and Significance

- Remotely operated and fully automated intraocular robotic system
- Adjustable RCM point aiming at performing safe manipulation
- Designed compatible to clinical requirements
- Simultaneously employ two tools inside the eye

Most significant achievement:

robotic retinal vein cannulation

Background Information

Two methods exists for reducing stress at the eye entry site during surgery:

- Using active software enforcement with visual or force-based feedback control to minimize tool-induced stress
- Physically constraining the surgical instrument about its incision point in the eye

RCM $\hat{\sigma}$ θ_4 \hat{Y} θ_1 d_3 $\bullet \theta_2$ Slave robot with 6-DOF

LABORATORY FOR Computational Sensing + Robotics

THE JOHNS HOPKINS UNIVERSITY

Master robot with 3 DOF

system architecture

CAD model of the RCM laser tool holder

alignment of the RCM to the incision point with computer-vision guidance by searching the minimal detected area of laser points

The data acquisition of the master manipulators and control for the IRISS are implemented on a National Instruments PXI real-time target with sampling rate of 1 kHz

resolution of optical joint encoders for each DOF

Joint	Count/Rev.	Gear ratio	Resolution	
θ_1	4000	100:1	0.90 mdeg/count	
θ_2	2048	588:1	0.30 mdeg/count	
d ₃	1024	60:1	1.26 µm/count	
θ_4	1024	17:1	20.7 mdeg/count	

statistical results of precision test

	RMS	SE	Max.	n
Point A	0.027	0.002	0.045	14
Point B	0.030	0.002	0.047	15

All values are in units of mm.

point A (at $\theta_1 = 15^\circ$, $\theta_2 = 15^\circ$ and $d_3 = -2.55$ mm). point B (at $\theta_1 = 5^\circ$, $\theta_2 = -5^\circ$ and $d_3 = -2.10$ mm).

Surgery tasks performed

experimental setup for surgical tests on porcine eyes

- The IRISS was able to perform the following surgical procedures:
- 1. anterior lens capsulorhexis
- 2. viscoelastic injection
- 3. hydro-dissection
- 4. lens aspiration
- 5. **retinal vein cannulation** (requires a tool-positioning accuracy of 10 μ m)

6. vitrectomy.

View of the surgical field through the microscope moments

before retinal vein cannulation

during retinal vein cannulation

Assessment

- Pros
- Developing software and hardware components for a remote robotic master-slave retinal surgery
- Many technical approaches to increase the precision
- Laser-based RCM positioning
- Performing many in vivo advanced surgery tasks
- Cons
- They have not attached a force sensing tool to the robot for active force control (sclera or tip) – online sclera monitoring is not possible
- Surgeons mostly rely on visual or force feedback cues (collaborative controlled robots seem more advantageous)

Conclusion

- Developing an active force control at sclera can still be a novel study
- It would be a great study to compare the sclera safety with the 2 methods mentioned.
- The same studies also can be done on tip force instead of sclera force

 J. T. Wilson, M. J. Gerber, S. W. Prince, C.-W. Chen, S. D. Schwartz, J.-P. Hubschman, and T.-C. Tsao, "Intraocular robotic interventional surgical system (iriss): Mechanical design, evaluation, and master slave manipulation," The International Journal of Medical Robotics and Computer Assisted Surgery, 2017.

