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Abstract
Purpose Previous work on surgical skill assessment using
intraoperative tool motion has focused on highly structured
surgical tasks such as cholecystectomy and used generic
motion metrics such as time and number of movements.
Other statistical methods such as hidden Markov models
(HMM) and descriptive curve coding (DCC) have been
successfully used to assess skill in structured activities on
bench-top tasks. Methods to assess skill and provide effec-
tive feedback to trainees for unstructured surgical tasks in
the operating room, such as tissue dissection in septoplasty,
have yet to be developed.
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Methods We proposed a method that provides a descrip-
tive structure for septoplasty by automatically segmenting it
into higher-level meaningful activities called strokes. These
activities characterize the surgeon’s tool motion pattern. We
constructed a spatial graph from the sequence of strokes in
each procedure and used its properties to train a classifier to
distinguish between expert and novice surgeons. We com-
pared the results from our method with those from HMM,
DCC, and generic metric-based approaches.
Results We showed that our method—with an average
accuracy of 91%—performs better or equal than these state-
of-the-artmethods,while simultaneously providing surgeons
with an intuitive understanding of the procedure.
Conclusions In this study, we developed and evaluated an
automated approach to objectively assess surgical skill dur-
ing unstructured task of tissue dissection in nasal septoplasty.

Keywords Unstructured activities · Partially observed
time series · Surgical skill assessment · Feature extraction ·
Septoplasty · Feedback

Introduction

Traditional methods of surgical skill evaluation have been
subjective, with supervising surgeons subjectively evaluating
trainee surgeon competence and skill in relatively unstan-
dardized methods [1,2]. Recent changes to the accreditation
process for surgery training programs require that these pro-
grams nowmeasure a trainee’s competence and surgical skill
objectively. However, valid, quantitative methods for assess-
ing technical surgical skill are rare, and the need for the
development of these methods is great.

Septoplasty is a commonly performed surgery designed to
relieve nasal obstruction. It achieves this goal by correcting
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deviations from midline of the nasal septum—the structure
that separates the nasal passage and nostrils into left and right
sides. Deviations are a common anatomic cause of narrowing
of the nasal airway aperture that leads to increased airway
resistance and a sensation of nasal obstruction. One of the
most important steps in septoplasty involves separating the
skin of the septum from the underlying bone and cartilage.
This step is typically performed with a Cottle elevator—a
thin long tool with a dull blade at the tip that can be used to
cut adhesions, regions where the skin is tightly bound to the
underlying structure, thus separating the skin from the bone
and cartilage. After this step, the bone and cartilage can be
appropriately assessed and irregularities corrected [3,4].

Septoplasty is a high volume index procedure (260,000
cases in 2006, USA) performed by head and neck sur-
geons [5]. Training programs must ensure that residents
are competent to perform this surgery before they graduate.
However, this procedure still lacks an objective, standard-
ized, data-drivenmetric for evaluating technical skill. Current
methods for assessment rely upon the number of procedures
performed and other subjective approaches that are not stan-
dardized across training programs [6].

Surgical procedures such as septoplasty pose unique chal-
lenges to traditional subjective skill assessment approaches.
The first and foremost issue is that the evaluating surgeon
and the trainee surgeon cannot both look at the surgical field
at the same time, because the surgical site is literally within
the nose, with access and visualization of the surgical site
occurring through the nostril. Because the nostril is a small
opening, the operating surgeon’s head looking down into
the nasal passage blocks an observer’s view, i.e., only one
surgeon can view the surgical site at a time. This makes
both teaching and evaluating septoplasty difficult. Second,
the most important step in the procedure, mucosal flap eleva-
tion, involves unstructured surgical tool motion that cannot
be decomposed into a sequence of predefined segments. Sim-
ilar unstructured tool motion is seen in many other surgical
procedures requiring blunt and sharp tissue dissection. Other
challenges for objective skill assessment during septoplasty
include patient-specific variations in anatomy and constant
changes in the reference coordinate frame due to patients’
head movements [1].

Existing techniques for objective surgical skill assessment
[7–11] are not applicable to unstructured tool motion in sep-
toplasty. The state of the art for such assessment metrics
in laparoscopy procedures is summarized in [12]. Generic
aggregate metrics of time and motion efficiency [10,11]
may not be computed in the septoplasty context because the
amount of dissection that is required varies across patients
[13]. Other statistical approaches such as hidden Markov
models (HMMs) [14,15] anddescriptive curve coding (DCC)
[16,17] have previously been applied to objectively assess
skill for structured tasks performed on inanimate bench-top

models. These statistical methods have yet to be applied to
objectively assess surgical skill in the operating room for
procedures such as septoplasty, which involve unstructured
surgical tool motion. However, describing tool motion using
generic metrics or statistical models would still not help
trainees learn how to perform the procedure.

Our primary goal was to elucidate the structure of tool
motion observed in septoplasty such that faculty surgeons can
effectively teach the procedure, assess performance, and pro-
vide meaningful feedback to trainees, and such that trainees
can efficiently understand the intention and nature of the tool
motions, guiding strategies, and abstract planning during sep-
toplasty.

In this paper, we propose amethod that provides a descrip-
tive structure for septoplasty by automatically segmenting
it into higher-level activities. These activities characterize
surgeons’ toolmotion patterns, translate into clinicallymean-
ingful information, and encode surgical skill. We evaluate
our method for its ability to discriminate between levels of
surgical skill and compare our proposed method with three
state-of-the-art methods: HMMs, DCC, and generic metrics
computed from the raw signal (Fig. 1). HMMs and DCC
have been used successfully in surgical skill assessment for
structured tasks, such as suturing, which are performed in a
sequence of actions. The generic metrics serve as a baseline
comparison and provide a first-hand insight to the low-level
signal structure. Finally, we discuss the advantages and draw-
backs of our proposedmethod versus the three other methods
in terms of their ability to deal with the live-patient surgical
signal, unstructuredmulti-surgeon toolmotions, andwhether
their output can be translated into actionable feedback.

Experimental setup

We used data from a cohort study of five faculty sur-
geons (experts) and nine trainee resident and fellow surgeons
(novices), conducted over 2years and across five sites. We
captured data at all sites using a common protocol and equip-
ment. Our data collection procedure did not interfere with
routine patient care in any manner, and all pertinent data col-
lection equipment was sterilized according to the standard
operating room procedures before each case. The institu-
tional review board at Johns Hopkins approved our study.

The signal for our analyses comprised of kinematic data
describing motion of the Cottle elevator during septoplasty.
As shown in Fig. 2, we affixed an electro-magnetic (EM)
sensor (6◦ of freedom) to the Cottle elevator (“Cottle sen-
sor”). We performed a pivot calibration for both tips of the
Cottle elevator before each procedure. The patient’s head
moves during surgery as a result of dissection with the Cottle
elevator. For about 70% of the procedures in our study, we
measured patients’ headmotion using a second sterilized sen-
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Fig. 1 Overview of the
proposed approach (red), in
comparison with three
state-of-the-art approaches,
DCC (green), HMM (blue), and
baseline generic metrics

sor placed within the folds of a sterile towel tightly wrapped
around the patient’s head (“head sensor”). We used an EM
field generator (Aurora®, Northern Digital, Inc., Ontario,
Canada) to track the Cottle and head sensors.

We captured video recordings of the procedure to annotate
for segments when the Cottle was in use andwhen it was idle,
which of the two ends of the Cottle elevator were being used,
and for the operating surgeon when more than one surgeon
performed the procedure. We processed data only from seg-
ments of the procedure when the Cottle elevator was in use.
We recorded video of the procedure using two Kinect®de-
vices (Microsoft, Inc., Redmond, WA, USA) rigidly fixed to
a tripod. We developed custom data collection software to
capture synchronized video and kinematic data.

Our data collection process involved minimal input from
the operating surgeon, who circled the perimeter of the nose
with one tip of the Cottle elevator at the beginning of each
surgery. We used the data from this segment to register the
tool tip with the location of the patient’s nose (Fig. 4, left).

In this study, we used data from 86 procedures. An expert
surgeon operated in 60, and a novice operated in 26 proce-
dures. Both an expert and a novice surgeon operated in 14
procedures. Thesemulti-surgeon cases add to the complexity
of the analysis since we partially observed the surgeon, with
the possibility that her performance is influenced by that of
the previous surgeon.

Methodology

In this section,wedescribemethodology for the four different
approaches we took to build a binary classifier for surgical
skill assessment in septoplasty: stroke-based, signal-based,
DCC [16], and HMM [14].

As the first step, we automatically subtract the patients’
head movements from the tool motion signal (Fig. 1). In our

Fig. 2 Cottle elevator with electromagnetic sensor used by surgeons
in this study to elevate the mucosal flap in a septoplasty procedure.
A second EM sensor (head sensor; not visible in picture) was used to
measure patients’ head motion during surgery

primary approach, we automatically extracted higher-level
structures called “strokes” from the tool signal and built a
search graph based on the strokes. We represent each graph
with a set of features and use them to classify trials as expert
or novice.

In our second approach, we investigated generic features
that can be extracted from the raw tool motion signal (before
stroke segmentation), such as profiles of velocity, accelera-
tion, and dominant frequencies. In two other model-based
approaches, we used HMMs and DCC-based string dictio-
naries to computemeasures of similarity to expert and novice
models. The similarity measures then served as features for
classification purposes.

Subtracting patient’s head motions

LetO(w)
1:N be theCottle tip positions during a recorded surgical

trial. Each data point O(w)
f is a Cartesian position of the tool

tip in the world coordinate system. The origin of the world
coordinate system is associated with the EM field generator.
The world coordinate system changes from one trial to the
next, and the working field (the patient’s head) is also not
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stationary over the duration of a trial. Consequently, similar
surgical actions are represented differently in the world coor-
dinate frame. We therefore transformed tooltip data from the
world coordinate frame to the coordinate system of the septal
plane, which provides a more consistent reference frame for
data across all procedures in our dataset.

We defined an orthonormal coordinate system
〈
u f
x ,u

f
y ,

u f
z
〉
originating at the center of the septal plane with uz being

the normal of the plane (Fig. 3). Because the septal coordinate
system moves with respect to the world coordinate system,
we estimated its location at each time frame f . We estimated
the initial septal plane

〈
u0x ,u

0
y,u

0
z
〉
as the plane formed by the

first and third principal components of the active tool tip tra-
jectory during nose circling registration.We then updated the
location of the septal plane at each time frame by subtracting
head movements measured from the reference sensor.

Having obtained the septal coordinate system and its cen-
ter location c f at each time frame f , we transferred the raw
observation O(w)

f from the world frame to the septal frame

O(s)
f (for simplicity O f ) where O f = [x f , y f , z f ]T .

O(s)
f := [u f

x ,u
f
y ,u

f
z
]T
(O(w)

f − c f )

In the case of procedures for whichwe did not use a head sen-
sor, we estimated the location of the septal plane as a proxy
measure for headmotion.We assumed that the patients’ head
motion during surgery was constrained to one degree of free-
dom (side-to-side rotation). The estimate for the septal plane
at a point in time was the plane that best fit the most recent
tooltip data. We validated our method to estimate the septal
plane and head motion using data from procedures where we
used a head sensor. On average, the septal planewe estimated
using our approach differed from the true septal plane by 3.4◦

and 7mm.

Automated segmentation of strokes

We identified that surgeons use stroking motions of the Cot-
tle to elevate the mucosal flap off the underlying cartilage,
basedon insights about the septoplasty procedure fromexpert
surgeons and exploratory analyses (Fig. 3, left). We devel-
oped a method to automatically extract strokes using tool tip
kinematic data. We defined a stroke Si to start (si ) when the
Euclidean distance from the active tool tip to the septal plane
is at a local minimum, and end (ei ) at the nearest frame fol-
lowing si when the distance from the active tool tip to the
septal plane is at a local maximum.

Si = Osi :ei

To avoid detection of extraneous strokes, we applied a mov-
ing average filter to smooth the tool tip position data, and

constraints to the stroke duration, length, and distance from
the beginning or end of strokes to the center of the nose
(Fig. 3).

Search graphs

Strokes made with the Cottle elevator during septoplasty
encode clinically meaningful information about the proce-
dure. Each stroking motion during septoplasty serves to
achieve elevation of the mucosal flap away from the sep-
tal cartilage and bone, eventually covering the area of the
septum while searching for adhesions between the mucosa
and the cartilage. These objectives are clinically meaning-
ful. Excessive force applied to elevate the mucosa may cause
tearing and results in septal perforation, which leads to unde-
sirable postoperative outcomes. The extent and rate of septal
plane coverage reflects the surgeon’s efficiency in elevating
the mucosal flap. Our goal is to define and extract features
that can characterize these activities and explain the differ-
ences between expert and novice movements.

We extracted the semantic information encoded by strokes
during septoplasty by representing each procedure as nodes
on a graph. We used the stroke segments to form a two-
dimensional directed graph G = (V, A) on the septal plane,
where V is a set of vertices and A is a set of arcs. Each vertex
vi represents one stroke that we computed by projecting the
starting position of the stroke onto the septal plane:

vi := [Osi · usix , Osi · usiy ]

Each arc ai is a directed edge from vi to vi+1. Because these
graphs reveal the surgeon’s search pattern on the septal plane,
we call it a “search graph”. Figure 4 shows an example search
graph for septoplasty procedures performed by expert and
novice surgeons.

First approach: stroke-based features

Wedefined a set of functions on the graph arcs and vertices to
extract features from the graph (Fig. 3). The off-plane func-
tions measure the trajectory length of the stroke Pi , distance
travelled by the stroke Di , height of the stroke Fi , and the
time of completion Ti . The on-plane functions compute the
length of the arcs L(ai ), the absolute angle of the arcs α(vi ),
and the relative angles θ(vi ) between two adjacent arcs.

We employed this set of functions to compute fea-
tures describing each stroke. We specified seven features
(described below) based on a hypothesis that experts repeat
strokes more consistently and regularly, and with greater
efficiency relative to novice surgeons. The off-plane fea-
tures include Stroke Curvature Consistency, Stroke Duration
Consistency, and Stroke Height Distribution, while on-plane
features consist of Arc Length Distribution, Absolute Arc
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Fig. 3 (Left) representation of
the segmented strokes in the
form of a graph that connects
the starting positions of
consecutive strokes after they
have been projected onto the
septal plane; (center) on-plane
graph features; and (right)
off-plane features per stroke

Fig. 4 (Left) three-dimensional visualization of a detected stroke
brushing away fromseptal plane, thePCA-estimated septal plane (pink),
and manually drawn outline of the nose (black) by surgeon. (Right)
expert and novice two-dimensional search graphs on the septal plane.

Color (blue to red) indicates progression of time. The vertex size is
proportional to the height of a stroke. The red outline marks the convex
hull of the covered area on the septum

Angle Distribution, Relative Arc Angle Distribution, and
Area Coverage Rate.

Stroke curvature consistency Wehypothesized that surgeons
need to perform different types of strokes to adapt to anatomy
within the nose. Consequently, we computed measures of
local variance instead of the standard global variance mea-
sures. Stroke Curvature Consistency (SCC) measures the
local consistency of stroke curvatures across strokes. We
anticipated that expert surgeons will have more consistent
wrist motion that yield strokes with similar curvatures, and
therefore a lower SCC, than novice surgeons. We computed
the curvature of the i th stroke,C(Si ), as the ratio of the stroke
trajectory length Pi to the Euclidean distance Di between the
start and end points of the stroke:

C(Si ) := Pi/Di

where

Pi := P(Si ) :=
ei−1∑

f=si

∥O f+1 − O f ∥ Di := D(Si ) := ∥Oei − Osi ∥

We then measured the local consistency of curvatures C̄(Si )
by computing the squared distance between C(Si ) and its
local smoothed representation µi :

C̄(Si ) := (C(Si ) − µC
i )

2 µC
i = median([C(Si−2) . . .C(Si+2)])

We defined the SCC for a trial to be the median of the C̄
values of that trial.

Stroke duration consistency Stroke Duration Consistency
(SDC) measures the local consistency in stroke duration:

T̄ (Si ) := (T (Si ) − µT
i )

2 µT
i = median([T (Si−2) . . . T (Si+2)])

where T (Si ) := ei − si is the time to finish one stroke. We
hypothesized that strokes by expert surgeonswill have higher
local consistency and therefore lower SDC, when compared
with strokes by novice surgeons.

Stroke height distribution We computed the stroke height
as a proxy for the force applied to elevate the mucosa by
measuring the Euclidean distance between the start and end
positions of the stroke.

D(vi ) := ∥Oei − Osi ∥
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For a given graph, we computed a histogram from the height
of the strokes. We hypothesized that expert surgeons more
finely modulated the force they apply to elevate the mucosa
than novice surgeons. We anticipated that expert surgeons
apply greater force in areas where the flap can be easily ele-
vated and lesser force in areas of greater adhesions (around
bone–bone and bone–cartilage junctions) to avoid tearing
the mucosal flap. In contrast, we expected novice surgeons to
make tentativemotions and apply small but uniform amounts
of force throughout the procedure.

Arc length distribution For a given graph (Fig. 3, center
image), we computed the length of all the arcs and then con-
structed a normalized histogram. The location of each vertex
vi on the septal plane is computed by projecting the starting
position of the stroke into the septal plane:

X (vi ) := [Osi · usix , Osi · usiy ]

Then, the length of an arc is defined as the distance between
its head and tail vertices:

L(ai ) := ∥X (vi+1) − X (vi )∥

We hypothesized that experts’ graphs contain longer arcs,
because at each stroke, they manage to elevate larger areas
of the mucosal flap. Therefore, they can access farther points
on the septum for the subsequent strokes.

Absolute arc angle distribution We computed the distribu-
tion of absolute angles of arcs as a measure of the probability
of choosing a certain direction for the next stroke. We
hypothesized that expert surgeons followed amore consistent
pattern (a more uniform distribution of absolute arc angles)
when compared with novice surgeons.We computed the nor-
malized histogramof the absolute angle of the arcsα(ai ). The
absolute angle of each arc is defined as the angle between the
arc and the basis of the septal plane coordinate system ux :

α(ai ) := arccos ((X (vi+1) − X (vi )) · ux/L(ai ))

The absolute arc angles explain the search pattern with
respect to the septal plane basis and thus sensitive to anatom-
ical variations in the septum across patients.

Relative arc angle distribution To mitigate the previous fea-
ture’s anatomical sensitivity, we computed the relative angle
between two adjacent arcs. Instead of representing the search
pattern in the basis of the septal plane, this new feature
encodes the pattern of changes in decision making. We cal-
culated the normalized histogram of the relative arc angles.
These relative arc angles (called θ(ai−1, ai ), as shown in

Fig. 3, center image), were computed as:

θ(ai−1, ai ) := α(ai ) − α(ai−1)

We hypothesized that expert surgeons maintain a structured
search pattern, which leads to graphs that contain many
instances of smaller θ values. On the other hand, novice sur-
geons display random search patterns that result in graphs
that are uniformly distributed in θ .

Area coverage rate (ACR) We defined the area covered at
node vi as the area inside a convex hull of the search graph
after completion of the i th stroke (denote as AC(vi )). The
convex hull covers the finite set of points, v1:i , consisting of
the vertex v1 to vi .We defined the ACR at node vi , ACR(vi ),
to be the increase in AC with each stroke:

ACR(vi ) := AC(vi ) − AC(vi−1) := Convex Area(v1:i )

−Convex Area(v1:i−1)

We defined the ACR for a given trial to be the median of all
the ACR(vi ) values. ACR is an index of the efficiency with
which surgeons search for adhesions between themucosa and
underlying cartilage. We hypothesized that expert surgeons
will have larger ACR than novice surgeons because experts
elevate large areas of the mucosal flap with each stroke. We
anticipated that novice surgeons make tentative strokes that
do not fully elevate the mucosal flap and therefore return to
dissect previously elevated parts of the septum, leading to
small ACR values.

Second approach: signal-based features

As the second approach for skill classification, we defined
three generic features derived from the raw, non-idle kine-
matic signal in the septal coordinate frame: velocity profile,
acceleration profile, and frequency spectrum profile. These
low-level features may encode patterns in motor behavior of
surgeons. We hypothesized, for example, that movements by
expert surgeons have a higher velocity and frequency than
those by novice surgeons.

Velocity distribution Given that the time difference between
two consecutive frames in our signal is constant, we com-
puted the velocity of the Cottle elevator at frame f as the
backward differences such that V f = O f − O f −1. We then
computed a normalized histogram from the velocity magni-
tudes of each trial.

Acceleration distribution We estimated acceleration by cal-
culating backward differences between successive values of
velocity, expressed as A f = V f − V f−1. We represented
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Table 1 Accuracy of skill
classification for stroke-based
features

F1 F2 F3 F4 F5 F6 F7 All

LOTO [69.70] [69.70] [75.76] [80.30] [77.27] [77.27] [65.15] [90.91]

(61.90) (74.40) (69.35) (79.17) (72.32) (71.43) (69.94) (87.50)

LOUO [66.67] [68.18] [59.09] [72.73] [59.09] [66.67] [59.09] [74.24]

(59.52) (72.32) (53.57) (71.43) (56.25) (63.10) (65.18) (73.51)

Values are %[Micro] (Macro) averages. Features are Stroke Curvature Consistency (F1), Stroke Duration
Consistency (F2), Stroke Height Distribution (F3), Arc Length Distribution (F4), Absolute Arc Angle
Distribution (F5), Relative Arc Angle Distribution (F6), Area Coverage Rate (F7), and the combination of
all features through majority voting (ALL)

Table 2 Accuracy of skill classification for signal-based features

SF1 SF2 SF3 All

LOTO [63.64] [60.61] [75.76] [71.21]

(66.07) (61.90) (72.02) (72.02)

LOUO [45.45] [53.03] [43.94] [46.97]

(50.00) (52.38) (45.24) (51.19)

Values are %[Micro] (Macro) averages. Features are profile of Veloc-
ity (SF1), Acceleration (SF2), Frequency (SF3), and their combination
through majority voting (ALL)

each trail with a normalized histogram of the magnitude of
acceleration values.

Frequency spectrum profile To compute the spectral profile
of the kinematic signal, we first calculated the magnitude
of the signal in the septal coordinate frame and removed
the mean from the signal. We then applied a 256-length fast
Fourier transform.We then down-sampled the 256 dimension
FFTmagnitudes and use it as the feature vector.We hypothe-
sized that, due to increased dexterity in the wrist, experts will
perform more higher-frequency movements than novices.

Third approach: hidden Markov model

As the third approach for skill classification, we modeled
each skill class (expert and novice) as an HMM and predict
class labels using maximum-likelihood classification [14].
We investigated a variety of HMM configurations, including
different states (1–20) and Gaussianmixture components per
state (3–20). We trained the HMMs using different combina-
tions of features from the kinematic signal including position
and orientation, velocity and orientation, with and without
normalization, in both the septal and world frames.

Fourth approach: descriptive curve coding

Weimplemented theDCC[16] approach as the fourthmethod
for skill classification. In this method, we encoded the tool
tip trajectory as a string of symbols chosen from a prede-
fined alphabet. In the training phase, we built a dictionary

Table 3 Accuracy of Skill classification for the HMM [14] method
using position, orientation, and velocity of the tracked tool

pos+orn (s) pos+orn (w) vel+orn (s) vel+orn (w)

LOTO [70.93] [63.95] [61.62] [58.13]

(62.82) (58.91) (63.78) (53.65)

LOUO [51.55] [29.06] [45.34] [53.48]

(55.19) (35.00) (52.11) (55.76)

Values are %[Micro] (Macro) averages for kinematics represented in
the world (w) or septal (s) frame

Table 4 Accuracy of skill classification for the DCC [16]method using
two alphabets A1 and A2 (sensitive to 45 and 22.5◦ change of direction,
respectively)

A1 (s) A1 (w) A2 (s) A2 (w)

LOTO [84.28] [91.66] [81.03] [86.28]

(79.84) (88.45) (73.80) (81.98)

LOUO [89.24] [90.21] [90.07] [83.86]

(86.10) (88.92) (89.55) (81.58)

Values are %[Micro] (Macro) averages for kinematics in the world (w)
or septal (s) frame

of common strings per skill class. In the testing phase, we
computed the likelihood of a given test sample under the
expert and novice models by aggregating similarity of all the
dictionary entries.

We investigated the DCC approach using two alphabets:
A1, which consists of sevenwords and is sensitive to changes
of direction larger than 45◦, and A2, with 19 words and sen-
sitivity of 22.5◦. In addition, we encoded both the raw signal
in the world frame as well as the signal in the septal plane to
determine robustness of our findings.

Training and evaluation

For ground truth, we considered faculty surgeons as experts
and resident/fellow surgeons as novices. We used a kernel
support vector machine (SVM) for classifying surgical skill
(expert vs. novice)with different features as the input: stroke-
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Fig. 5 Feature representation of the average expert and novice. Stroke-
based features are Area Coverage Rate (ACR), Stroke Curvature Con-
sistency (SCC), Stroke Duration Consistency (SDC), Stroke Heights,

Arc Lengths, Absolute Angles, and Relative Angles. Signal-based fea-
tures are velocity, acceleration, and FFT magnitudes
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Fig. 5 continued

based, signal-based, and DCC-based similarity features. For
the HMMs, we performed maximum-likelihood classifica-
tion.

We tested the classifiers under two cross-validation setups:
Leave-One-Trial-Out (LOTO) and Leave-One-User-Out
(LOUO). In the LOTO setup, we used one procedure
(referred to as a trial) as the test data and all the remain-
ing trials for training. In the LOUO setup, we used all trials
performed by one surgeon as the test data. When a trial was
performed by two surgeons, we concatenated the data from
segments performed by each surgeon and considered it as a
separate trial.

We computed accuracy of the classifier in two ways—
the micro-average (ratio of correctly classified samples to
the total number of samples) and macro-average accuracy
(average of true positive rates of each class).

All histogram-based features were normalized (removing
mean and standard deviation) followed by PCAdimensional-
ity reduction.We testedmultiple configurations of bin counts
(between 10 and 30 with increments of five) and number of
principal components (between one and the number of bins
in increments of two). Similarly, for FFT frequencies, we
tested for different sampling rates (10–30). We report the
best results for single features as well as the combination of
features through majority voting over both cross-validation
methods (LOUO and LOTO) and both accuracy calculations
(micro- and macro-averages).

Results

Stroke-based features and DCC-based similarity measures
were highlypredictive of surgical skill.Both these approaches

involve encoding the raw signal in a higher-level represen-
tation before classification—search graphs for stroke-based
features and dictionaries for DCC. In contrast, signal-based
features and HMM-based similarity measures were poorly
discriminative of surgical skill; both these approaches relied
on the raw signal (see Tables 1, 2, 3, 4).

We observed that experts have a lower SCC (Fig. 5a),
in accordance with our hypothesis that their stroke curva-
tures remain locally consistent. Experts tool motion was also
at higher frequencies compared with novice tool motions
(Fig. 5h). Thus, expert surgeons learn to perform a sequence
of similar shaped strokes with higher frequency as they
acquire skill with experience.

Our analyses show that expert surgeons have a higher SDC
than novices (Fig. 5a), as against our initial hypothesis that
experts perform strokes of consistent duration. Our findings
may be explained by the observation that expert surgeons
better adapt to changes in septal anatomy than novices. Con-
sequently, expert surgeons deploy shorter strokes in areas of
high adhesions and longer strokes in areas of low adhesions.

Expert surgeons have a greater ACR and larger stroke
heights than novices (Fig. 5a, b). These findings are consis-
tent with our hypothesis that novice surgeons make tentative
tool motions, whereas expert surgeons make more definitive
and decisive tool motions. As a result, experts elevate larger
areas of the mucosal flap with larger forces when compared
with novice surgeons.

The distribution of absolute angles illustrates that expert
surgeons prefer to first elevate the septum deep into the nose
(depth-first approach), resulting in small absolute angles. On
the other hand, novice surgeons tend to elevate the width of
the outer flap before dissecting deeper into the nose (breadth-
first approach), resulting in large absolute angles (Fig. 5d).
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The distribution of relative angles demonstrates that
experts have smaller values than novice surgeons. This
observation is consistent with our hypothesis that experts
systematically dissect the tissue, resulting in sequences of
strokes along a straight line and small absolute angles.Novice
surgeons tend to be more unplanned in their approach with
strokes positioned more in a zigzag fashion along the septum
and resulting in large absolute angles (Fig. 5e).

Finally, experts search for adhesions more efficiently than
novice surgeons (Fig. 5c). The arc length distribution shows
that the distance between start location of consecutive strokes
is larger for experts (about 10mm) than for novices (about
2mm). This observation is consistent with our hypothesis
that expert surgeons elevate larger areas of the mucosal flap
with each stroke and thereby effectively position their tool
further away for the next stroke. Novice surgeons tend to
search and elevate smaller areas of the mucosal flap.

For 30% of cases (with no head sensor), we estimated the
septal plane location (at each time frame) and thus introduced
a small noise (7◦ rotation and 7mm shift) to the adjusted
tool tip signal. We expect that the error in estimating the
septal plane has a minimal impact on the performance of our
feature-based classifier because the features are computed
by averaging the signal over time, thereby suppressing the
added noise.

Discussions

With an accuracy of 91%, our system performs on par with
the state of the art metrics for skill assessment of structured
surgical activity as summarized in [12]. Current techniques
for automatic objective skill assessment falls into two major
categories: generic aggregate metrics and statistical models
(such as HMM). Generic aggregate metrics have been shown
to accurately assess skill in structured tasks in the training
laboratory and in box trainers and virtual reality simulators.
Such global metrics are typically applicable to compare skill
across surgeons only when they perform the same structured
task.

Most generic aggregate metrics computed using tool
motion data may not be immediately translated into mea-
suring skill in the OR because of ambiguity in applying
them with the highly variable kinematics observed in the
OR. For example, generic aggregate metrics of time, path
length, speed, and motion efficiency may not be computed
in the septoplasty context because the amount of dissection
that is required varies across patients. Other metrics such as
motion smoothness, force, dominant frequencies, and profile
of velocity and acceleration, as they are currently defined for
the overall task/procedure, are not applicable directly to sep-
toplasty, because they are dependent on what segment of the
surgery is being performed. In our method, we investigated

the idea of local smoothness (stroke duration and curvature)
and force applied for tissue dissection (stroke height) during
septoplasty, and showed that these metrics using the adap-
tive definitions we used contain discriminatory information
on surgical technical skill.

Conventional statistical methods such as HMMs are inef-
fective for skill classification in the septoplasty context, as our
data show, owing to the high variability in unstructured tool
motion observed during the surgery. In addition, these meth-
ods do not explain how to perform the septoplasty or provide
feedback on how to better perform the surgery. Our method
extracts the inherent structure in the surgery by transforming
the raw unstructured motion data into a sequence of strokes.
The properties of strokes that we computed as metrics allows
for individualized skill assessment when multiple surgeons
operate in a given procedure with relatively short duration
of signals from each surgeon. Furthermore, the metrics we
computed provide feedback in a format that surgeons can
easily understand and efficiently apply in real-life teaching
situations in the operating room.

Conclusion

Our in-depth study on the structure of septoplasty and objec-
tive skill assessment demonstrated that extracting higher-
level structures to encode tool motion yields valid objective
assessments for surgical skill. Our study sheds light on the
actual structure of tool motion during septoplasty, which
is otherwise considered an unstructured and hard to teach
procedure. Thus, our findings provide faculty surgeons with
tools to effectively teach the procedure to trainees and objec-
tively evaluate surgical skill and competence. Furthermore,
our analyses provide trainees with specific insights into how
to perform the procedure like an expert, thereby facilitating
more efficient skill acquisition. Whether using stroke-based
or DCC-based skill assessment and feedback translates into
faster and better acquisition, and longer retention, of skill
among trainees needs to be determined through subsequent
clinical studies.

One possible technical improvement for the proposed fea-
tures is to structure them in away to capture temporal changes
throughout a single trial. This information is already con-
tained in the search graph. Discovering these changes would
allow tomark specific anomalies in the time series as targeted
feedback for trainee surgeons.
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