Low-cost 3-axis soft tactile sensors for the human-friendly robot Vizzy

Seminar Critical Review Group 15 Nick Skacel

Project Background (Group 15)

- Galen Robot: Hand-over-hand cooperatively controlled surgical robotic system used for head and neck microsurgery.
- Currently Galen system can detect tool-to-robot forces but for some applications it is also useful to control/detect tool-to-tissue forces
- Our group is working on developing a force sensing drill for skull base surgery.
 - Force readings could be used for better control of Galen
 - Applications: Visual feedback, safety limits, surgical skill evaluation, unbiased comparison of surgical techniques

Paper Selected: Low-cost 3-axis soft tactile sensors for the human-friendly robot Vizzy

- Conference paper sent to our group by Professor Taylor
- Current design uses strain gauge force sensors developed by the BLAM lab
- Challenges: sensors are large, drill to sleeve contact difficult to construct
- Paper describes a potential alternative
 - Hall effect force sensor design

Citation: T. Paulino et al., "Low-cost 3-axis soft tactile sensors for the human-friendly robot Vizzy," 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 966-971.

Problem Summary

- Need for tactile sensing to ensure safe interaction between robot and environment
- Desired Sensor features:
 - Soft contact surface
 - Ability to measure complete force vector (normal and shear forces) with high sensitivity, low hysteresis, and good repeatability
 - Size, weight, complexity constraints
- Although more companies have been commercializing tactile sensors, price is still relatively high and specifications are inadequate for specific applications

Key Result

- Paper presents design, development, and characterization of a 3-axis tactile sensor
- Three main contributions
 - Novel solution for 3-axis soft tactile sensing, with state of the art performance
 - Detailed description on how the sensor can be fabricated at low cost without specific technical expertise
 - Demonstrated real-world use of the sensor

Background: Hall effect

- Current flowing through slab
- Presence of the magnetic field: charged particles experience Lorentz force
 - Buildup of charge on one side of the slab creates electric field
- Hall voltage: potential difference across the slab
 - Outputted by Hall effect sensor

https://en.wikipedia.org/wiki/Hall_effect

Technical Approach: Sensor Design and Working Principle

- Sensor consists of soft elastomer with permanent magnet inside and Hall effect sensor below
- Hall effect sensor that was used is 3axis sensor
 - Can detect magnetic field variations caused by the application of both normal (Z) and Shear (X, Y) forces
- Air gap to improve sensitivity [1]
- Initial prototype outlined in a 2013 paper but no characterization or realworld experimentation reported [2]

1 - Hall-effect sensor 2- Magnet 3- Elastomer 4- Robot finger 5- Air gap

Sensor Components

- Hall effect sensor: Melexis MLX90393 magnetic node
 - 3 x 3 mm
 - 16-bit output proportional to magnetic flux density along X, Y, Z axes [3]
- Flexible PCB used to bend to fit Vizzy finger geometry
- Elastomer made out of Polydimethylsiloxane (PDMS)
 - Widely used silicon-based polymer
 - Shaped using 3D printed molds (CAD files freely available)
- Permanent magnet: neodymium disk magnet with 1mm diameter and 1mm height with grade N45 was used
- Data from sensors acquired with Arduino through I2C protocol
 - Requires four wires per sensor

Calibration

- Reference sensor: OptoForce optical force sensor
- Increasing force step movement
 - Hall effect force sensor pressed against reference sensor with increasing intensity over three main directions
 - 1N constant normal force during shear force calibration
 - Repeated 10 times for each direction

Calibration

- Quadratic regression performed for Z (normal force) component
- Linear regression for each of the X and Y (shear force) components

Validation

- Measured calibrated output of one sensor mounted on robot while a finger applied pressure on the reference force sensor.
- Plots were created for both normal and shear force detection (next slide).
- Normalized root-mean-square error computed using goodnessOfFit() MATLAB function
 - -Infinity (poor fit) to 1 (perfect fit)
 - Normal force: 0.9123
 - Shear force: 0.7908

Validation Plots

Hysteresis, Sensitivity, Noise

- Limited Hysteresis
 - Robot finger tapped repeatedly on reference sensor while applying consecutive pressures of same intensity
- Minimum force detected
 - Micropositioning system: moved from position right before contact in $4\mu m$ increments
 - 7.2mN for normal force state of the art considering sensors integrated into robot hands
 - less than 20mN for shear force not an exact measurement due to "limitation of the calibration setup"
- Noise level: ±2.5 mN

Consecutive Force Experiment

Real-world Experiment

- Experiment in which Vizzy grabbed and lifted a plastic cup
 - Either empty or partially filled with water
- Force values recorded on sensor C in image below
- Increase in Y component (+0.3 N) consistent with increase in weight of cup when filled with water

Vizzy Lifting Empty Cup

(a) 1 - Before contact 2 - Grabbing cup 3 - Lifting cup.

Vizzy Lifting Partially Filled Cup

(a) 1-Before contact 2-Grabbing cup 3-Lifting cup.

Assessment

- Novel approach to tactile force sensing in robotic applications
- Paper provided detailed process on how to assemble and calibrate the sensors
- Accessible to researchers due to low cost of components and limited expertise necessary

Assessment

Pros

- Paper clearly outlined development and testing steps
- Diagrams were helpful in understanding experiments performed and data collected
- Paper was explicit regarding the components used

Cons

- In our project electrical current is running through drill: could cause magnetic interference with the Hall sensors (interference cases untested in this paper)
- Many grammatical mistakes but did not detract from overall meaning
- Could have done more detailed testing to determine optimal air gap, elastomer material, etc.

Conclusion

- The force sensing method described in this paper could improve our group's drill design
 - Hall effect sensors much smaller than strain gauge sensors
 - More stable contact between drill sleeve and drill (elastomer/flexure material)
- Next steps:
 - Testing of a wider range of applications
 - Experimenting with different components
 - Magnetoresistive sensor
 - Exploring cases where magnetic interference is possible

References

- L. Jamone, L. Natale, G. Metta, and G. Sandini, "Highly sensitive soft tactile sensors for an anthropomorphic robotic hand," IEEE Sensors Journal, vol. 15, no. 8, pp. 4226–4233, 2015.
- 2. C. Ledermann, S. Wirges, D. Oertel, M. Mende, and H. Woern, "Tactile sensor on a magnetic basis using novel 3d hall sensor first prototypes and results," in INES. IEEE, 2013.
- "Melexis MLX90393 micropower triaxis R magnetometer datasheet," https://www.melexis.com/en/product/mlx90393/triaxismicropowe r-magnetometer.