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Project Background (Group 15)

• Galen Robot: Hand-over-hand cooperatively controlled surgical 
robotic system used for head and neck microsurgery.

• Currently Galen system can detect tool-to-robot forces but for 
some applications it is also useful to control/detect tool-to-tissue 
forces

• Our group is working on developing a force sensing drill for skull 
base surgery.

• Force readings could be used for better control of Galen
• Applications: Visual feedback, safety limits, surgical skill evaluation, 

unbiased comparison of surgical techniques



Paper Selected: Low-cost 3-axis soft tactile 
sensors for the human-friendly robot Vizzy
• Conference paper sent to our group by 

Professor Taylor
• Current design uses strain gauge force 

sensors developed by the BLAM lab 
• Challenges: sensors are large, drill to sleeve 

contact difficult to construct
• Paper describes a potential alternative

• Hall effect force sensor design

Citation: T. Paulino et al., "Low-cost 3-axis soft tactile 
sensors for the human-friendly robot Vizzy," 2017 IEEE 
International Conference on Robotics and Automation 
(ICRA), Singapore, 2017, pp. 966-971.



Problem Summary

• Need for tactile sensing to ensure safe interaction between 
robot and environment

• Desired Sensor features:
• Soft contact surface
• Ability to measure complete force vector (normal and shear forces) with 

high sensitivity, low hysteresis, and good repeatability
• Size, weight, complexity constraints

• Although more companies have been commercializing tactile 
sensors, price is still relatively high and specifications are 
inadequate for specific applications



Key Result

• Paper presents design, development, and 
characterization of a 3-axis tactile sensor

• Three main contributions
• Novel solution for 3-axis soft tactile sensing, with state 

of the art performance
• Detailed description on how the sensor can be 

fabricated at low cost without specific technical 
expertise

• Demonstrated real-world use of the sensor



Background: Hall effect

• Current flowing through slab

• Presence of the magnetic 
field: charged particles 
experience Lorentz force

• Buildup of charge on one side 
of the slab creates electric field

• Hall voltage: potential 
difference across the slab

• Outputted by Hall effect sensor

https://en.wikipedia.org/wiki/Hall_effect



Technical Approach: Sensor Design and 
Working Principle
• Sensor consists of soft elastomer with 

permanent magnet inside and Hall 
effect sensor below

• Hall effect sensor that was used is 3-
axis sensor

• Can detect magnetic field variations 
caused by the application of both normal 
(Z) and Shear (X, Y) forces

• Air gap to improve sensitivity [1]
• Initial prototype outlined in a 2013 

paper but no characterization or real-
world experimentation reported [2]



Sensor Components

• Hall effect sensor: Melexis MLX90393 magnetic node
• 3 x 3 mm
• 16-bit output proportional to magnetic flux density along X, Y, Z axes [3]

• Flexible PCB used to bend to fit Vizzy finger geometry

• Elastomer made out of Polydimethylsiloxane (PDMS)
• Widely used silicon-based polymer
• Shaped using 3D printed molds (CAD files freely available)

• Permanent magnet: neodymium disk magnet with 1mm 
diameter and 1mm height with grade N45 was used

• Data from sensors acquired with Arduino through I2C protocol
• Requires four wires per sensor



Calibration
• Reference sensor: OptoForce

optical force sensor

• Increasing force step 
movement

• Hall effect force sensor 
pressed against reference 
sensor with increasing intensity 
over three main directions

• 1N constant normal force 
during shear force calibration

• Repeated 10 times for each 
direction



Calibration

• Quadratic regression performed for Z (normal force) component

• Linear regression for each of the X and Y (shear force) components 



Validation

• Measured calibrated output of one 
sensor mounted on robot while a 
finger applied pressure on the 
reference force sensor.

• Plots were created for both normal 
and shear force detection (next 
slide).

• Normalized root-mean-square 
error computed using 
goodnessOfFit() MATLAB function

• -Infinity (poor fit) to 1 (perfect fit)
• Normal force: 0.9123
• Shear force: 0.7908



Validation Plots



Hysteresis, Sensitivity, Noise

• Limited Hysteresis
• Robot finger tapped repeatedly on reference sensor while applying 

consecutive pressures of same intensity

• Minimum force detected
• Micropositioning system: moved from position right before contact in 

4μm increments
• 7.2mN for normal force – state of the art considering sensors integrated 

into robot hands
• less than 20mN for shear force – not an exact measurement due to 

“limitation of the calibration setup”

• Noise level: ±2.5 mN



Consecutive Force Experiment



Real-world Experiment

• Experiment in which Vizzy grabbed and lifted a plastic cup
• Either empty or partially filled with water

• Force values recorded on sensor C in image below

• Increase in Y component (+0.3 N) consistent with increase in 
weight of cup when filled with water



Vizzy Lifting Empty Cup



Vizzy Lifting Partially Filled Cup



Assessment

• Novel approach to tactile force sensing in robotic applications

• Paper provided detailed process on how to assemble and 
calibrate the sensors

• Accessible to researchers due to low cost of components and 
limited expertise necessary



Assessment

Pros
• Paper clearly outlined 

development and testing 
steps

• Diagrams were helpful in 
understanding experiments 
performed and data collected

• Paper was explicit regarding 
the components used

Cons
• In our project electrical current 

is running through drill: could 
cause magnetic interference 
with the Hall sensors 
(interference cases untested in 
this paper)

• Many grammatical mistakes but 
did not detract from overall 
meaning

• Could have done more detailed 
testing to determine optimal air 
gap, elastomer material, etc.



Conclusion

• The force sensing method described in this paper could 
improve our group’s drill design

• Hall effect sensors much smaller than strain gauge sensors
• More stable contact between drill sleeve and drill (elastomer/flexure 

material)

• Next steps:
• Testing of a wider range of applications
• Experimenting with different components
• Magnetoresistive sensor
• Exploring cases where magnetic interference is possible
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