Ultrasound Needle Guidance for

Hydrogel Injection During

Cervical Cancer Brachytherapy

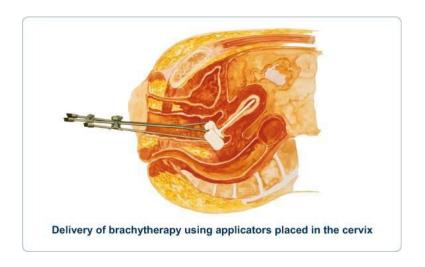
Group #18: Tracy Kao (Computer Integrated Surgery II)

Mentors: Carmen Kut, Younsu Kim, Dr. Akila Viswanathan, Dr. Emad Boctor

Mentor Affiliations: Johns Hopkins Hospital Department of Radiation Oncology, Medical Ultrasound Imaging and Intervention Collaboration Lab (MuSiiC Lab)

Ultrasound Needle Guidance for Hydrogel Injection During Cervical Cancer Brachytherapy

Ultrasound-Compatible Female Pelvic Phantom for Hydrogel Spacer Injection during Brachytherapy Training


Group #18: Tracy Kao (Computer Integrated Surgery II)

Mentors: Carmen Kut, Younsu Kim, Dr. Akila Viswanathan, Dr. Emad Boctor

Mentor Affiliations: Johns Hopkins Hospital Department of Radiation Oncology, Medical Ultrasound Imaging and Intervention Collaboration Lab (MuSiiC Lab)

Clinical Need

- American Cancer Society estimates 4,170 women will die from cervical cancer in 2018.
- There is a clear need to **differentiate** the cervical tumor mass from surrounding normal tissues e.g. the rectovaginal septum during brachytherapy.
- In brachytherapy planning, it is routine practice to inject a hydrogel spacer to minimize radiation dose to normal anatomical structures. However, this is a challenging procedure, and inaccurate needle placement can lead to complications such as accidental perforation of the bowel and rectum.

Problem Statement

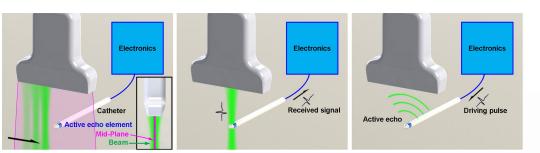
We want to develop a method for more **precise localization** and/or visualization of the needle for hydrogel spacer injection under ultrasound image guidance during preparation of patient for brachytherapy procedure.

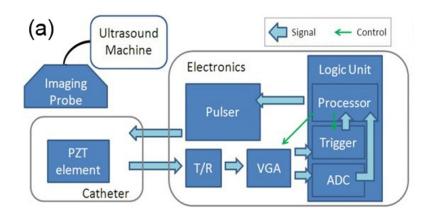
Problem Statement

We want to develop a method for more precise localization and/or visualization of the needle for hydrogel spacer injection under ultrasound image guidance during preparation of patient for brachytherapy procedure.

We want to develop an **ultrasound-compatible phantom** to assist training on **localizing and visualizing a needle** for hydrogel space injection during the preparation of a patient for brachytherapy.

"NEEDLE"


Original
Approach
and
Progress


"PHANTOM"

Updated
Approach
and
Progress

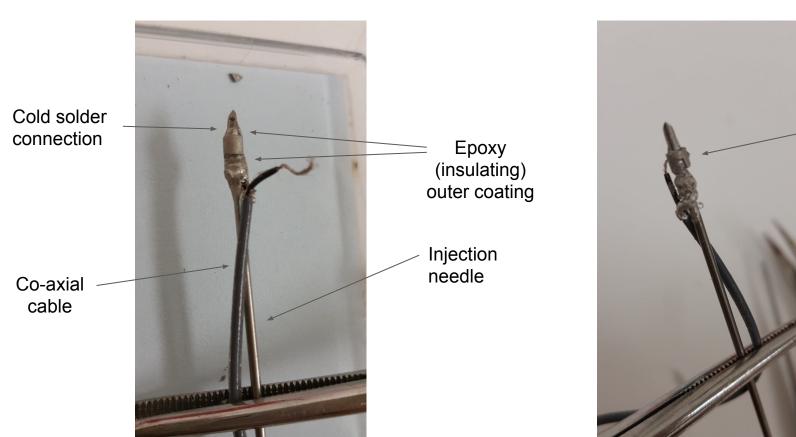
Technical Approach

- Adapt Active Ultrasound Pattern Injection System(AUSPIS) for hydrogel needle application.
- Attach piezoelectric element to needle tip for active response to transducer.

Deliverables

- Minimum: (By 3/6/3018)
 - Documentation of specifications and initial design concepts.
- Expected: (By 3/29/2018)
 - Development of a hydrogel injection needle prototype adapted for ultrasound compatibility.
 - Documentation of working prototype design and process.
- Maximum: (By 5/10/2018)
 - Design and construction of phantom used to test adapted needle.
 - Documentation of phantom design, construction, and resulting test data.

& Milestones

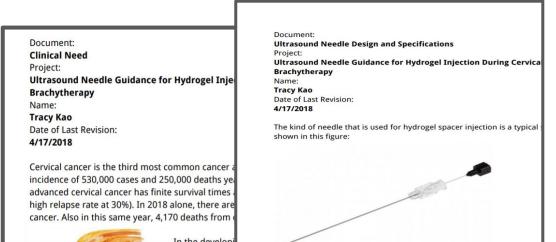

- Clinical Observation & Clinical Need Evaluation (3/1/2018)
- Initial Design Sketch (3/6/3018)
- Documentation of Specifications and Conceptual Design (3/8/2018)
- Working prototype that meets specified specifications (3/27/2018)
- Documentation of working prototype (3/29/2018)
- Choice of compatible ultrasound system (4/5/2018)
- Output ultrasound image pattern (4/17/2018)
- Phantom Construction (4/24/2018)
- Documentation of Phantom Data(5/1/2018)
- Final Report and Presentation (5/10/2018)

Dependencies

* Level of deliverable affected based on previous plan

Level of Deliverable Affected*	Dependency	Proposed Solution	Important Dates	Alternatives	Status			
Expected	Hydrogel Needle	Acquire from Clinical Consultant	3/8/3018	Use other needle.	Resolved as of 2/14/2018.			
Expected	Hardware Components	Provision by MuSiiC Lab.	4/5/2018	Place order as budget allows.	Provided but insufficient.			
Expected	Access to Lab Environment for Prototype Development	Provision by MuSiiC Lab	3/8/2018	Use currently available lab space.	Resolved as of 3/30/2018.			
Minimum	Compatible Ultrasound System	Provision by MuSiiC Lab (Prioritize TRUS)	4/5/2018	Use abdominal systems.	Resolved as of 4/14/2018.			
Expected, Minimum, Maximum	Financial Resources	Propose budget to mentors.	3/6/2018	Finance by self.	Resolved as of 3/30/2018			

Progress: Incomplete Prototype


Broken

PZT

element

Documentations for Completion

- Background Document on Clinical Need
- Needle Specifications and Conceptual Design
- Needle Manufacturing and Testing Plan

Document:

Needle Manufacturing and Testing Plan

Projec

Ultrasound Needle Guidance for Hydrogel Injection During Cervical Cancer

Brachytherapy

Name:

Tracy Kao

Date of Last Revision:

4/17/2018

Materials Needed [Manufacture]:

- PZT Tube, Specs: PZT-5H, OD: 0.100", Wall: 0.012", Length: 0.070" ~ 0.1"
- Conductive Silver Epoxy
- Non-Conductive Insulating Epoxy
- Coaxial cable/wire
- Spinal Needle (for Hydrogel Injection)
- Clamp or other positioning mechanism
- Multimeter

Materials Needed [Testing]:

- Working Ultrasound System with Probe
- US-Kev High Performance
- Acrylic Box
- Water

Pelvic Phantom (Second Part of Project)

Lessons Learned

- Get a budget as early as possible.
- Always account for failure.
- Plan for more iterations and practice, especially with unfamiliar processes.

Updated Deliverables

Level	Item (Dates based on Milestones)
Minimum (By 4/20/2018)	 Documentation: Needle Design [X] Documentation: Phantom Design
Expected (By 4/24/2018)	 Documentation: Needle Manufacturing and Testing Plan [X] Documentation: Phantom Manufacturing and Testing Plan Simple Phantom (Geometric Shape, Realistic Texture) Working prototype of Needle
Maximum (By 5/10/2018)	 Simple Phantom (Geometric Shape, Ultrasound Compatible) Mold Used to Manufacture Phantom Documentation: Phantom Manufacturing and Test Results Documentation: Needle Test Data

Milestones (Dates)

Completed

- Clinical Observation & Clinical Need Evaluation (3/1/2018)
- Discussed Project Goals with All Mentors (3/6/2018)
- Documentation: Initial Design Sketch of Needle (3/8/3018)
- Documentation: Needle Specifications (3/27/2018)
- Attempt 1st Needle Prototype (4/11/2018)
- Choice of Ultrasound System (4/14/2018)

Newly Added

- Further Clinical Observations (4/23/2018)
- Documentation: Phantom Design and Manufacturing Plan (4/23/2018)
- 1st Geometric Phantom (4/20/2018)
- 2nd Geometric Phantom (4/27/2018)
- Documentation: Phantom Test with Needle (5/4/2018)
- Documentation: Phantom Test Data on Ultrasound System (5/7/2018)
- Finalized Wiki Page with All Documentation (5/10/2018)

PHANTOM

Approach

Phantom material: Soft Plastisol (mixed in ratio)

Mold material: Silicone (Mold); Glass; Aluminum

Acoustic Properties: Glass microbeads (of various concentrations)

Environment: Hood with ventilation; temperature treatment of materials.

Phantom 1: Texture-Specific

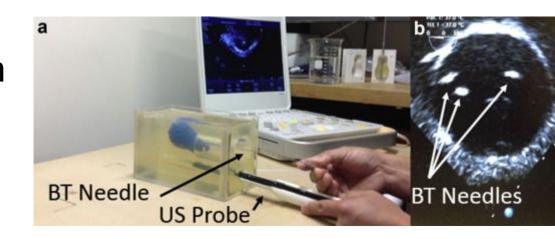
Phantom 2: Ultrasound Compatible

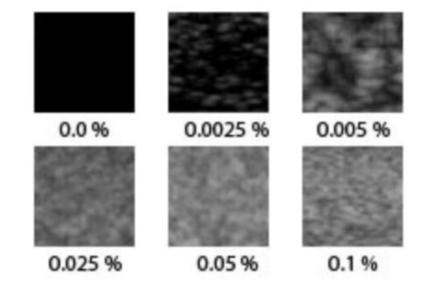
Testing: Ultrasound and Needle injection

PHANTOM

Phantom Construction

1. Texture:

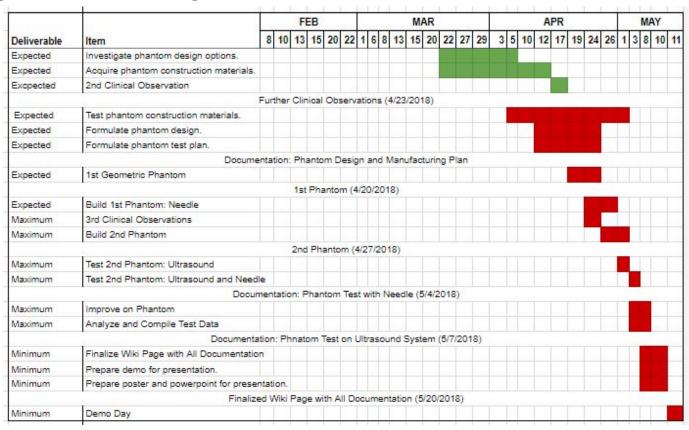

- Based on ratio of Plastic to Plastic Softener
- 3 gradations


2. Echogenicity:

- Based on Density of Microbeads in Plastic
- 3~4 gradations

Challenges:

- High temperatures (~350 deg F)
- Difficult structural anatomy to mold
- Bubbling of mixture problematic



Progress + Projected Timeline

	Item	FEB							MAR									APR							MAY				
Deliverable		8	10	13	15	20	22	1	6 8	1	3 1	5	20	22	27	29	3	3	5 1	0 1	12	17	19	24	26	1	3	8	10 1
Minimum	Select and confirm project.									Г																			
Minimum	Shadow the procedure.							-																				П	
Minimum	Initial meeting with all mentors.										I																	П	
	Clinical	Obs	erva	ation	8.0	Clini	cal I	Vee	d E	valu	uatio	on i	(3/1	/20	18)														
Minimum	Read relevant papers on ultrasound guid	land	e.					*(1)																				П	
	Diso	JSSE	ed P	roje	ct G	oals	wit	h A	l Me	ento	ors ((3/6	3/30	18)															
	Docume	enta	tion:	Init	ial D	esig	gn S	ket	ch o	f N	eed	lle i	(3/8	/20	18)														
Minimum	Confirm acccess to lab space.																												
Minimum	Confirm access to prototyping materials																											П	
Minimum	Consult design options.																											Ш	
	Doc	ume	enta	tion:	Ne	edle	Spe	ecif	cati	ons	(3/	27	/201	18)															
Expected	Complete budget estimate.																												
Expected	Formulate test plan for needle																		1									П	
Expected	Acquire access to ultrasound system.																											П	
Expected	Learn how to use an ultarsound system.																	L		4									
Expected	Attempt 1st prototype.																											П	
		Atte	emp	t 1st	Ne	edle	Pro	tot	/pe	(4/1	11/2	018	8)																
		Ch	oice	of L	Jitra.	sour	nd S	yst	em	(4/1	14/2	018	8)																

Progress + Projected Timeline

Dependencies

Level of Deliverable Affected	Dependency	Proposed Solution	Important Dates	Alternatives	Status
Expected, Maximum	Phantom Construction Materials (e.g. Plastisol, Microbead, Silicone, Metal and Glass Containers)	Use the materials available in lab space and purchase others as necessary.	4/20/2018	Purchase all materials needed. Minimize complexity of phantoms.	Resolved as of 4/14/2018
Expected, Maximum	Phantom Manufacturing Environment (Lab Space, Hood)	Use the BME Design Studio in Clark Hall	4/20/2018	Work on it outdoors.	Resolved as of 3/30/2018.
Expected, Maximum	Phantom Manufacturing Equipment (e.g. 3D Printing)	Use the BME Design Studio in Clark Hall	4/20/2018	Use Wyman Park Bldg. equipment	Resolved as of 4/11/2018.

PHANTOM

Management Plan

I set meetings as needed with Carmen Kut (main mentor). We meet at least weekly and if necessary, bi-weekly.

Acknowledgement

My mentors: Carmen Kut, Younsu Kim, Dr. Akila Viswanathan, Dr. Emad Boctor have dedicated time, expertise, and financial resources to teach me how to carry out this project.

Additionally, Marc Morcos and Michelle Zwernemann have also provided valuable insight on phantom manufacturing.

Updated Reading List

Bair, R. J., Bair, E., & Viswanathan, A. N. (2015). A radiopaque polymer hydrogel used as a fiducial marker in gynecologic-cancer patients receiving brachytherapy. *Brachytherapy*, *14*(6), 876-880.

Banerjee, R., & Kamrava, M. (2014). Brachytherapy in the treatment of cervical cancer: a review. *International journal of women's health*, 6, 555.

Bell, M. A. L., Kuo, N. P., Song, D. Y., Kang, J. U., & Boctor, E. M. (2014). *In vivo* visualization of prostate brachytherapy seeds with photoacoustic imaging. *Journal of biomedical optics*, 19(12), 126011.

Guo, X., Kang, H. J., Etienne-Cummings, R., & Boctor, E. M. (2014). Active ultrasound pattern injection system (AUSPIS) for interventional tool guidance. *PloS one*, *9*(10), e104262.

Viswanathan, A. N., Damato, A. L., & Nguyen, P. L. (2013). Novel use of a hydrogel spacer permits reirradiation in otherwise incurable recurrent gynecologic cancers. *Journal of Clinical Oncology*, *31*(34), e446-e447.

Zhang, H. K., Lin, M., Kim, Y., Paredes, M., Kannan, K., Patel, N., ... & Boctor, E. M. (2017, March). Toward dynamic lumbar punctures guidance based on single element synthetic tracked aperture ultrasound imaging. In *Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling* (Vol. 10135, p. 101350J). International Society for Optics and Photonics.

Nattagh, Khashayar, et al. "A training phantom for ultrasound-guided needle insertion and suturing." *Brachytherapy* 13.4 (2014): 413-419.

Thank you for listening!