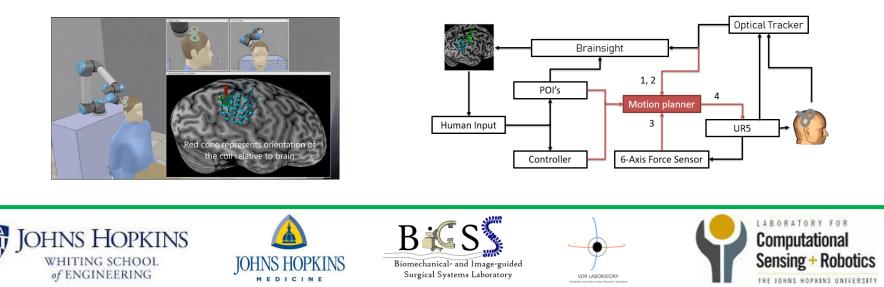
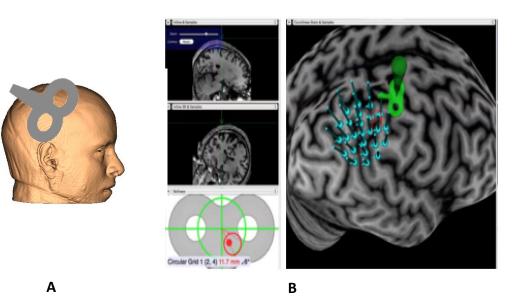
Transcranial Magnetic Stimulation (TMS) of the Supramarginal Gyrus: A Window to Perception of Upright

- Name: Ganesh Arvapalli
- Mentors: VOR lab: Dr. Amir Kheradmand, Dr. David S. Zee, BIGSS lab: Farshid Alambeigi, Dr. Mehran Armand



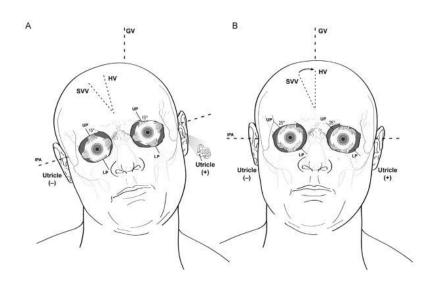
Robot-Assisted Transcranial Magnetic Stimulation (RA-TMS)


<u>Topic:</u> Assess subjective visual vertical (SVV) perception via eye tracking and relationship between SVV and the SMGp.

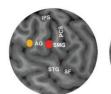
<u>Solution:</u> Create a robotic tool that can perform transcranial magnetic stimulation (TMS) automatically to measure areas of activity around the brain.

Paper Selection

- Transcranial Magnetic Stimulation (TMS) of the Supramarginal Gyrus: A Window to Perception of Upright
 - Explanation of TMS
 - Outlines need for robotic tool
 - Specifies durations and site



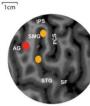
Problem Summary


- Perception of upright
 - Vestibular feedback
 - Subjective Visual Vertical (SVV)
- Localization of activity
 - Supramarginal Gyrus (SMGp)
 - Pathway?
- Eye torsion and link to SMGp

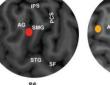
Key Results and Significance

- Spatial reference frame integration
 - Vestibular pathway elements
- SMGp linked to SVV tilt post-TMS application (p = 0.0039)
 - +2.7° when head tilted left
 - -3.6° when head tilted right

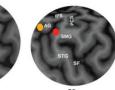
X=53, Y=-33, Z=34



S2 X=64, Y=-25, Z=26



S4 X=45, Y=-48, Z=38



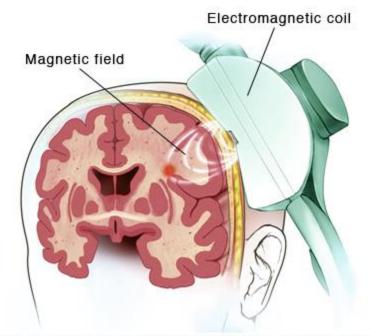
SF STG S

S5 X= 56, Y=-43, Z=37

S6 X=57, Y=-33, Z=22

S8 X=45, Y=-41, Z=44

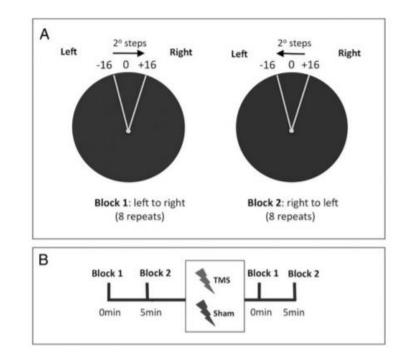
X=52, Y=-34, Z=35



Background

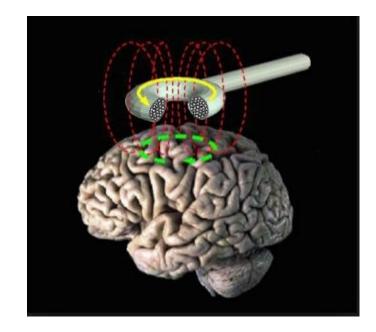
- Vestibular information •
 - Spatial orientation
 - Navigation
- Supramarginal gyrus (SMGp)
 - **Functional neuroimaging** studies
 - Cortical lesions + behavior analysis
- Subjective Visual Vertical (SVV) •
 - "Earth vertical"
- Transcranial Magnetic Stimulation (TMS)
 - **Disruptive effect on cortex**

MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED



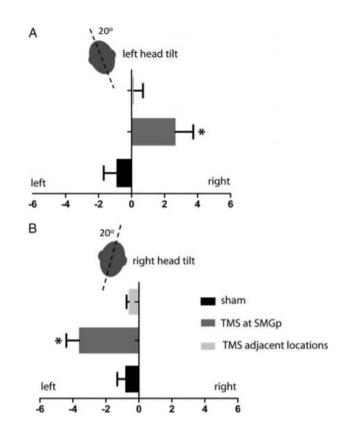
Methodology

- Forced-choice paradigm
- 2 blocks pre and post-TMS
- Rotation of laser
 - Projected on screen far away
 - Rotated ±16° w/2° increments
- Rotation of dial
 - Subjects align with laser
 - Weights: Left = 0, middle = 0.5, right = 1
 - Logistic regression to fit data, then where 0.5 reached is overall angle



Experimental Setup

- 8 healthy (5 m, 3 f) volunteers ٠
- Bite bar
- Training = 1 block ٠
- **TMS** Application •
 - Figure-eight coil held tangent to head
 - Continuous theta burst stimulation (cTBS)
 - 200 bursts every 200 ms •
 - Each burst had 3 pulses at • 50 Hz
 - Site of application monitored using external software (Brainsight)



Assessment

- Importance
 - Demonstrates significance of TMS
 - Highlights complexity of vestibular information processing
- Relevance
 - Tangency to head (safety)
 - Model of TMS coil being used
 - Duration of exposure
 - Length of time spent at each location
 - Visualization software

Assessment (cont.)

Pros	Cons
 Clear methodology and setup Described application of TMS well Effects clearly demonstrated impact of SMGp inhibition Vestibular processing pathway was well researched 	 Too few subjects Pre-TMS SVV not zeroed Few important figures Could always use more data analysis and graphs

Conclusions

- Solid foundation
- Linked SMGp to eye torsion successfully
- Demonstrated need for robotic tool to conduct experiment
- Next steps:
 - Functional mapping of SMGp (current project)
 - Eye torsion tracking (current project)
 - Repeat for left cerebral hemisphere

Questions?

References

- 1. Brodsky, M. C., & Holmes, J. M. (2012). Torsional augmentation for the treatment of lateropulsion and torticollis in partial ocular tilt reaction. *Journal of American Association for Pediatric Ophthalmology and Strabismus*, *16*(2), 141–144. <u>https://doi.org/10.1016/j.jaapos.2011.11.009</u>
- Kheradmand, A., Lasker, A., & Zee, D. S. (2015). Transcranial Magnetic Stimulation (TMS) of the Supramarginal Gyrus: A Window to Perception of Upright. *Cerebral Cortex*, 25(3), 765–771. <u>https://doi.org/10.1093/cercor/bht267</u>
- 3. Pereira, C. B., Kanashiro, A. K., Maia, F. M., & Barbosa, E. R. (2014). Correlation of impaired subjective visual vertical and postural instability in Parkinson's disease. *Journal of the Neurological Sciences*, *346*(1–2), 60–65. <u>https://doi.org/10.1016/j.jns.2014.07.057</u>

Special thanks to Dr. Amir Kheradmand for providing images used in this presentation!

