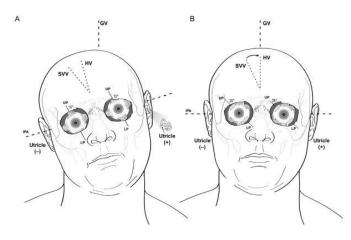
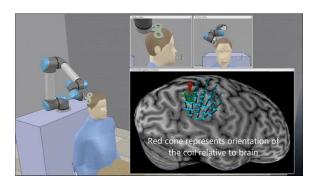
Robot-Assisted Transcranial Magnetic Stimulation (RA-TMS)

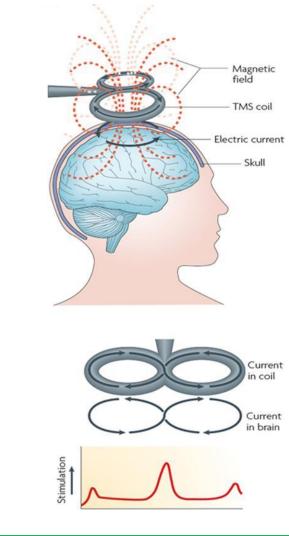

Name: Ganesh Arvapalli

Mentors: VOR lab: Dr. Amir Kheradmand, Dr. David S. Zee, BIGSS lab: Farshid Alambeigi, Dr. Mehran Armand

Background and Relevance

- Subjective Visual Vertical (SVV)
 - Eye tracking
 - Torsional motion
- Supramarginal gyrus (SMGp)
 - Perception of space
- Vestibular feedback and Perception





Current Approach

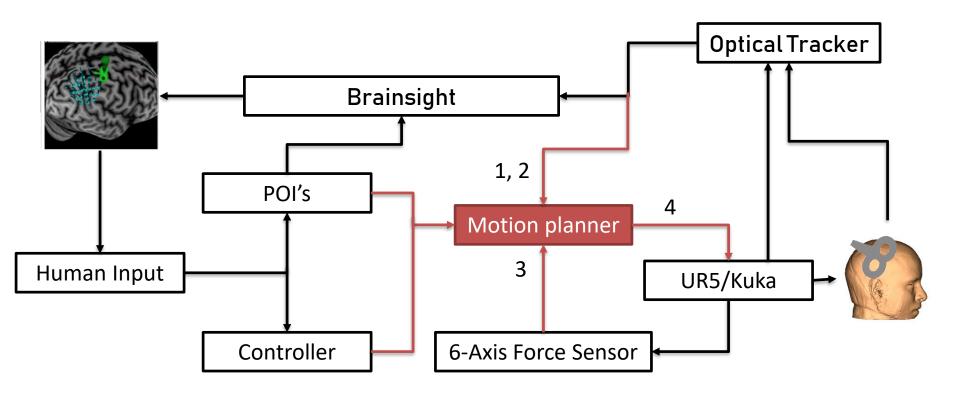
- Transcranial Magnetic Stimulation (TMS)
- Points of Interest (POI's)
- UR5/Kuka control
- Safety concerns
 - Force feedback

LABORATORY FOR Computational Sensing + Robotics <u>Topic:</u> Assess subjective visual vertical (SVV) perception via eye tracking and relationship between SVV and the SMGp.

<u>Solution:</u> Create a robotic tool that can perform transcranial magnetic stimulation (TMS) automatically to measure areas of activity around the brain.

Sub-goals

- 1. Registration of subject's head to MRI reconstruction of head based on cortex
- 2. Calculating TMS tool vector to targeted POI's on scalp in real time.
- 3. Constraining robotic motion to remain tangent to head (within safety constraints)
- 4. Converting simulated motion data into actual robotic movement



Solution Setup

Solution Steps

- 1. Define POI's prior to setup on MRI reconstruction
- 2. Position optical tracker with tool and head in view
- 3. Complete registration of head to MRI reconstruction + skin and find initial position of tool w.r.t. head using pivot calibration
- 4. Calculate vector of motion to first POI
- 5. Move coil to position very slowly and stop
- 6. (Optional: Measure force feedback from tool and adjust position accordingly)
- 7. Conduct experiment while keeping the tool stationary
- 8. Repeat steps 4-7 as needed.

Computational Sensing + Robotic

Deliverables

• Minimum Goals:

Developing control algorithms to move the TMS coil in simulation reliably between some given points on a phantom's head without considering the safety concerns.

• Expected Goal:

- Repeating the minimum goal task <u>with additional safety</u> <u>constraints</u> in **simulation**.
- Maximum Goal:
 - Move the TMS coil reliably between a number of different cortical locations on the physical robotic system

Dependencies

ltem	Reasoning	Status	Deadline	Backup Plan
Lab access*	To work in focused environment with simulation software (from Farshid)	In progress	2/23	Work off personal laptop or computers in other labs
Simulation software*	Model motion of robot before testing on actual system (from Farshid)	In progress	2/23	Use lab computers to work instead.
Brain visualization software	Construct 3D model of head based on MRI scans and show tool relative to brain (from Amir)	Received	-	-
Defined safety constraints	Ensure tool pressure against head is not dangerous (from Farshid and Amir)	In progress	3/1	Restrict movement of robot to very slow speeds
Robotic system in Homewood lab	Achieve maximum goal of performing experiments on real-world system (from Farshid and Amir)	In progress	4/1	Minimal testing will be done in lab on medical campus

LABORATORY FOR Computational Sensing + Robotics THE JOHNS HOPKINS UNIVERSITY

Timeline

Task		Status	Assessment	
Set up simulation software		Ongoing	Successfully run – 2/23	
Get relevant dimensions of all components		Ongoing	Record numbers – 2/23	
Construct 3D models of relevant environment parts		Upcoming	Create environment – 3/2	
Compute head registration based on MRI scans	3/9	Upcoming		
Compute tool registration		Upcoming	Run simulation with tracker w/ highlighted POI's – 3/29	
Gather POI's and position relative to CAD model	3/28	Upcoming		
Write motion algorithm w/o force feedback		Upcoming	Run in simulation - 4/12	
Document motion algorithm and registration		Upcoming	Document Assessment 1 – 4/7	
Research safety constraints and implementation of force feedback		Upcoming	Present findings – 4/12	
Write force feedback algorithm and integrate into existing code		Upcoming	Run in simulation – 4/26	
Document safety constraint algorithm		Upcoming	Document Assessment 2 – 4/21	
Understand Brainsight software usage and interface		Upcoming	Testing in VOR Lab – 5/10	
Port code into existing robotic system		Upcoming		
Document all code used in portability		Upcoming	Document Assessment 3 – 5/5	

*Total assessment will be done on 5/11, including documentation

Key Dates

Goal	Complete Date	Assessment Date	Overall Status
Recreate experiment environment in simulation without motion	3/2	3/8	
Registration of all environment elements to optical tracker	3/16	3/29	
Calculating TMS tool vector to targeted POI's on scalp in real time	4/6	4/12	Minimum Goal
Constraining robotic motion to remain tangent to head (within safety constraints)	4/20	4/26	Expected Goal
Interface motion data with brain visualization software	4/27	5/10	
Converting simulated motion data into actual robotic movement	5/4	5/10	Maximum Goal
Complete documentation reassessment (ongoing for each part)	5/11	5/17	

Management Plan

- Weekly Meetings with Farshid
 - Thursdays before class
- Bi-weekly meetings with Amir/Jorge + VOR Lab

Reading List

- 1. Brodsky, M. C., & Holmes, J. M. (2012). Torsional augmentation for the treatment of lateropulsion and torticollis in partial ocular tilt reaction. *Journal of American Association for Pediatric Ophthalmology and Strabismus*, *16*(2), 141–144. https://doi.org/10.1016/j.jaapos.2011.11.009
- 2. Gorelick, D. A., Zangen, A., & George, M. S. (2014). Transcranial magnetic stimulation in the treatment of substance addiction: TMS as addiction treatment. *Annals of the New York Academy of Sciences*, n/a-n/a. https://doi.org/10.1111/nyas.12479
- 3. Kheradmand, A., Lasker, A., & Zee, D. S. (2015). Transcranial Magnetic Stimulation (TMS) of the Supramarginal Gyrus: A Window to Perception of Upright. *Cerebral Cortex*, *25*(3), 765–771. https://doi.org/10.1093/cercor/bht267
- Narayana, S., Papanicolaou, A. C., McGregor, A., Boop, F. A., & Wheless, J. W. (2015). Clinical Applications of Transcranial Magnetic Stimulation in Pediatric Neurology. *Journal of Child Neurology*, 30(9), 1111–1124. https://doi.org/10.1177/0883073814553274
- 5. Pereira, C. B., Kanashiro, A. K., Maia, F. M., & Barbosa, E. R. (2014). Correlation of impaired subjective visual vertical and postural instability in Parkinson's disease. *Journal of the Neurological Sciences*, *346*(1–2), 60–65. https://doi.org/10.1016/j.jns.2014.07.057
- Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (n.d.). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. *Clinical Neurophysiology*, *120*(12), 2008–2039. https://doi.org/10.1016/j.clinph.2009.08.016
- Scocco, D. H., Wagner, J. N., Racosta, J., Chade, A., & Gershanik, O. S. (2014). Subjective visual vertical in Pisa syndrome. *Parkinsonism & Related Disorders*, 20(8), 878–883. https://doi.org/10.1016/j.parkreldis.2014.04.030

