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Project	Objective:		

The	goal	of	our	project	is	to	develop	an	automatic	segmentation	method	for	spine	CT	images	
using	max-flow/min-cut	optimization.		

Introduction	and	Motivation:	

We	are	motivated	for	this	specific	task,	since	our	work	will	be	a	major	component	of	“Spine	

Cloud”,	a	multi-year	project	proposed	by	Dr.	Siewerdsen	of	the	I-STAR	lab.	“Spine	Cloud”	hopes	
to	curate	a	database	consisting	of	patient	demographics,	images,	specific	anatomy,	surgical	

procedures,	and	pathologies.	Once	organized,	we	hope	to	correlate	these	defined	clinical	
variables	and	automatic	image	analysis	to	patient	surgical	outcomes.	By	developing	this	highly	

quantitative	approach	on	how	to	approach	future	spine	surgeries,	“Spine	Cloud”	will	provide	
more	favorable	and	consistent	outcomes.	 	

	
	
Figure	I1:	Spine	Cloud	workflow		

A	necessary	component	of	“Spine	Cloud”	is	a	large	database	of	annotated	spine	CT	images	
based	on	accurate,	automatic	segmentation.	Currently	within	the	I-STAR	lab,	segmentation	of	

spine	CT	is	handed	manually	which,	while	accurate,	is	often	time-consuming	and	very	

inefficient.	While	there	are	simple	techniques	for	auto-segmentation	like	Thresholding	and	

Region	Growing	that	are	computationally	efficient	and	easy	to	implement,	they	often	fail	to	
produce	an	accurate	segmentation.	With	these	techniques,	each	voxel	is	treated	independently	
in	the	CT	image,	which	prohibits	local	neighborhood	relations	like	smoothness	and	curvature.	
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Instead,	we	propose	to	treat	segmentation	as	an	energy	minimization	problem	which	can	

account	for	local	relations	by	transforming	the	CT	image	into	a	graph	and	using	Max-	Flow	/	
Min-Cut	Optimization	to	minimize	the	energy	function.		

Graph	Cut	Background:	
	 	
For	a	weighted	graph	with	two	vertices	and	α,β	terminals,	the	graph	cut	C	is	a	set	of	edges	that	
separates	the	two	terminals	in	the	induced	graph	such	that	no	flow	can	go	from	one	terminal	
node	to	the	other.	The	cost	of	cut	C	is	the	sum	of	the	edge	weights.	Therefore,	the	minimum	
cut	is	the	cheapest	cut	possible	that	separates	the	two	terminals.	This	cut	represents	the	Min-
Cut	/	Max-Flow	algorithm.	

	
Figure	B1:	Examples	of	Different	Graph	Cuts	Separating	the	two	Terminals	α,	β	
As	an	example	of	how	our	method	applies	graph-cuts,	we	first	start	with	a	CT	image	of	the	
spine	(Figure	B2).	To	define	the	nodes	of	the	graph,	we	take	each	voxel	in	the	CT	image	and	
create	a	node	(gray)	and	then	define	two	terminal	nodes	(orange	and	blue).	Each	voxel	node	is	
connected	by	an	edge	to	every	neighboring	voxel	node	as	well	as	to	both	terminal	nodes.	

	
Figure	B2:	Example	of	Graph-Cut	Segmentation	for	Spine	CTs	



The	values	of	the	terminal	link	weights	are	based	on	prior	information	detailing	the	likelihood	
that	certain	voxel	are	a	part	of	the	spine	or	the	background.	These	priors	ideally	will	have	
different	likelihoods	for	spine	vs	background	allowing	for	the	best	separation	between	bone	
and	background.	Voxel	node	to	voxel	node	edges	are	determined	by	measurable	quantities	of	
the	image	and	contribute	to	how	smooth	the	segmentation	will	appear.	Ultimately,	the	edge	
weights	determine	the	final	cut	that	will	be	made	since	the	cut	made	must	minimize	the	sum	of	
the	weights	which	are	cut.	In	this	minimization,	the	terminal	nodes	are	separated	from	each	
other	and	the	resulting	segmentation	is	assigned	based	on	which	terminal	node	a	given	voxel	is	
connect	to.	
	
	
Overall	Technical	Approach:	
	
Our	segmentation	relies	on	the	implementation	of	a	2D	max-flow	min-cut	optimization	method.	
The	MATLAB	code	to	execute	this	optimization	was	given	to	us	by	our	mentors.	Upon	receiving	
the	code	we	explored	the	parameter	space	to	see	what	affects	certain	parameters	would	have	
on	the	segmentation.	To	access	the	accuracy	of	our	segmentation	we	implemented	root	mean	
squared	error(RMSE)	and	dice	coefficient	metrics.	Our	implementation	was	tested	using	these	
metrics	on	the	manually	segmented	N20	spine	CT	dataset.	Once	we	had	a	good	understanding	
of	the	algorithm,	we	shifted	our	method	from	a	2D	implementation	to	a	3D	implementation.	
We	also	incorporated	information	of	centroid	positions	into	our	algorithm	which	informed	us	of	
the	center	of	each	vertebrae	in	the	CT	image.	Once	our	methodology	was	working	in	the	N20,	
our	mentors	encouraged	us	to	continue	to	adjust	the	algorithm	to	segment	the	N200	dataset.	

Since	the	N200	is	not	manually	segmented,	the	only	way	to	evaluate	the	performance	is	
qualitatively.	For	this	reason,	our	mentors	encouraged	us	to	segment	one	of	the	N200	members	
so	that	our	segmentation	method	could	be	validated	in	the	N200.	Our	approach	to	the	N200	
dataset	was	to	first	segment	the	spine	without	the	spinous	process,	and	then	attempt	to	
incorporate	the	spinous	process	and	address	certain	anomalies	like	instrumentation	and	tumors	
that	might	throw	off	the	segmentation.	The	segmented	N200	dataset	will	be	directly	used	as	a	
data	repository	for	the	Spine	Cloud	project.	

Specific	Technical	Approach:	
	
	
2D	Max-Flow	/	Min-Cut	Implementation	for	N20	
	
Pre-Processing	/	Defining	Weights	By	Intensities.	



	
In	order	to	find	quantitative	ways	to	better	separate	bone	and	background	within	the	CT	image,	
we	first	began	by	taking	advantage	of	an	already	manually	segmented	dataset.		Using	the	
manually	segmented	spine	region	as	a	mask	to	identify	the	spine	in	the	CT	image	(red	outline	in	
Figure	T1).			
	

	
Figure	T1:	Axial	Slice	261	of	Patient	3	where	the	manually	segmented	part	is	outlined	in	red.	
	
The	Hounsfield	intensities	were	extracted	for	both	the	inside	and	outside	of	the	segmentation.	
Spine	intensity	profile	histograms	were	made	of	the	of	the	foreground	versus	the	background.	
These	values	were	normalized	to	the	max	value	within	the	entire	CT	image	(Figure	T2).	All	
depicted	images	are	of	a	single	slice	in	Patient	3	from	the	N20	dataset,	though	we	applied	this	
process	to	the	entire	spine.	
	

	

Outside	the	Body	

Inside	the	Body	

Segmented	Spine	



Figure	T2:	Intensity	profile	of	Fore	(Spine)	vs.	Back	(All	Else)	for	Spine	3	slice	261	
	
We	noticed	that	there	were	two	major	peaks	for	the	histogram	defining	the	back	weights.	The	
first	due	to	the	total	black	background	outside	of	the	body	and	the	second	from	the	gray	
intensities	within	the	body	(Shown	with	the	arrows	in	Figure	T1).		Since	there	is	no	overlap	of	
outside	of	the	body	intensity	values	and	the	actual	spine	intensity	values,	we	can	better	
separate	the	spine	from	the	body	by	rescaling	the	histogram	intensities.		We	decided	on	the	
best	normalization	from	0.2	to	0.6	purely	qualitatively	since	we	were	simultaneously	developing	
our	quantitative	metrics	RMSE	and	Dice	Coefficient	at	the	time.		The	renormalized	histogram	is	
depicted	in	Figure	T3		

	
Figure	T3:	Rescaled	intensity	profile	of	Fore	(Spine)	vs.	Back	(All	Else)	for	Spine	3	
	
	
Our	terminal	node	weights	were	determined	solely	based	on	these	intensity	histograms.	After	
normalization,	the	intensity	of	the	voxel	would	either	be	within	the	bounds	of	0	to	1	or	outside	
of	it.	If	the	value	was	either	less	than	or	greater	than	1,	it	was	assigned	to	the	background.	If	the	
voxel’s	intensity	value	was	between	0	and	1,	then	that	voxel’s	connection	to	the	background	
terminal	node	would	be	the	value	of	the	back	weight	histogram	in	the	rescaled	intensity	profile	
for	that	voxel’s	intensity.	Similarly,	the	weight	connecting	the	node	to	the	spine	terminal	node	
would	be	set	by	the	value	of	the	foreground	histogram	for	the	node’s	intensity	value.	The	
concept	is	that	voxels	who	have	intensities	commonly	found	in	the	spine	will	be	anchored	to	
the	spine	terminal	node	with	strong	weights.	Since	strong	weight	likely	won’t	be	cut,	these	
voxels	will	likely	be	segmented	as	the	spine.	Conversely,	voxels	with	intensities	that	are	
normally	associated	with	soft	tissue	or	air	will	have	a	strong	connection	to	the	background	
terminal	node	and	will	be	segmented	as	such.	Visualizations	of	the	fore	and	back	weights	for	a	
single	CT	slice	may	be	seen	in	Figures	T4	and	T5,	respectively.	



																					 	
Figure	T4:	Fore	weights	of	the	spine																														Figure	T5:	Back	weights	of	the	spine	
	
	
With	just	this	pre-processing	step	and	using	histogram	intensity	profiles	to	define	weights,	we	
obtain	a	qualitatively	good	segmentation	of	the	spine.	However,	other	parts	of	the	anatomy	
were	included	within	the	segmentation	of	the	spine	(see	Figure	T6	in	slice	367,	and	tissues	like	
slice	518).	This	is	likely	due	to	the	N20	dataset	coming	from	The	Cancer	Imaging	Archives(TCIA)	
and	the	patient	likely	being	exposed	to	contrast	before	the	scan.	This	would	cause	parts	of	the	
soft	tissues	that	absorb	contrast	and	have	a	higher	intensity	in	the	CT	scan.	In	turn,	this	would	
have	a	strong	weight	to	the	fore	terminal	node	and	cause	it	to	be	segmented	as	part	of	the	
spine.	After	discussing	our	results	with	our	mentors,	they	suggested	taking	advantage	of	
centroid	positions	of	the	dataset.	This	allowed	us	to	add	an	additional	parameter	for	the	
weights	to	not	only	segment	based	on	intensity	but	also	by	location.	
	

	
Figure	T6:	Automatically	Segmented	Slices	of	Patient	3.		Note	that	while	the	spine	is	clearly	
segmented	well,	other	anatomy	has	been	included	in	the	segmentation	
	



Distance	Weighting:	
To	improve	our	algorithm	and	get	rid	of	incorrectly	segmented	anatomy,	we	first	tried	a	radial	
distance	weighting	transform	in	2D	for	axial	slices.	We	tried	it	for	a	single	slice	in	patient	3	(Slice	
229)	hoping	that	it	would	be	possible	to	extrapolate	the	centroid	positions	in	3D	based	on	
tangent	connections	between	centroids	in	a	slice-based	manner.	Below	details	our	distance	
transform	component	that	we	added	to	our	fore	and	back	weights	in	addition	to	the	histogram	
intensities.	

	
	
	
	

	
	
	
	

After	adding	the	distance	transform	component	to	the	weights,	we	tested	various	parameter	
values	to	determine	how	it	would	affect	the	segmentation.		The	results	of	the	parameter	sweep	
of	𝛼"	are	summarized	in	Figure	T7.	Overall,	with	a	higher	𝛼"	component,	the	amount	of	
inccorecty	segmented	anatomy	was	reduced.	However,	if	the	𝛼"value	became	too	large,	parts	
of	the	spine	were	no	longer	segmented.	An	𝛼"	value	of	.03	appeared	to	be	a	suitable	choice	for	
segmentation	of	this	slice.	

	
Figure	T7:	Parameter	sweep	for	𝛼"	with	distance	weighting		
	
3D	Max	Flow	/	Min	Cut	Optimization:	
After	adding	distance	weighting	to	our	algorithm,	we	then	were	tasked	with	moving	from	a	2D	
slice-based	approach	to	a	3D	implementation	of	Max	Flow	/	Min	Cut.	Adapting	our	2D	distance	

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆	𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎 
𝜶𝟏𝒆3𝜶𝟐‖𝒙3𝒄‖ 

𝑐	𝑖𝑠	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
𝛼A − 𝑠𝑐𝑎𝑙𝑖𝑛𝑔	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑥	𝑖𝑠	𝑝𝑖𝑥𝑒𝑙	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 
𝛼" − 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 



weighting	function	to	a	3D	approach	had	two	options.	The	first	option	was	to	model	the	spine	
as	a	series	of	spheres	where	the	center	is	the	centroid	and	the	distance	transform	would	decay	
the	further	a	voxel	was	from	the	centroid.	The	second	option	was	modeling	the	spine	as	a	
cylinder	where	the	axis	would	be	formed	by	the	vectors	connecting	adjacent	centroids.	Here	
the	distance	transform	would	decay	radially	from	the	axis	of	the	cylinder	and	the	top	and	
bottom	of	the	cylinder	would	be	capped	with	semi-spheres.	We	chose	to	purse	the	3D	method	
segmentation	of	the	N20	with	a	cylindrical	model	as	we	decided	the	cylinder,	rather	than	the	
sphere,	better	approximated	the	morphology	of	the	spine.		
	
The	limitation	of	using	a	cylindrical	method	was	that	it	would	segment	between	centroids	in	the	
inter-disc	space.	This	was	the	fault	of	the	model	assuming	the	spine	was	a	continuous	cylinder	
instead	of	a	series	of	cylinders.	To	address	this	problem,	a	convolutional	method	was	adapted	
that	could	move	along	the	axis	of	the	cylinder	and	detect	locations	where	the	spine	transitioned	
to	inter-disc	space.	This	was	accomplished	with	the	knowledge	that	the	inter-disc	space	was	
often	populated	with	lower	intensity	values	than	the	vertebral	bodies,	allowing	the	
convolutional	method	to	discriminate	between	the	two	locations.	However,	the	convolutional	
cylinders	that	measured	the	intensity	values	along	the	axis,	had	to	be	angled	orthogonally	to	
the	vector	connecting	adjacent	centroids.	This	allowed	for	detection	of	inter-disc	spaces	that	
were	not	necessarily	in	the	axial	plane.	An	example	of	this	axial	to	orthogonal	orientation	
manipulation	can	be	seen	in	Figure	T8.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	T8:	Axis	connecting	
centroids													Figure	T9:	Output	
of	the	non-axial	convolutional		
locations.	Axial	orientation	seen	in		 											inter-dic	detection	method.	Large	dips	indicate	the		
green.	Orthogonal	Orientation	shown										axial	slice	location	of	the	interdisc	space	
in	yellow.	
Upon	using	the	inter-disc	detection,	each	axial	slice	is	given	a	weight.	Figure	T9	shows	an	
example	of	the	inter-disc	detection	for	150	slices.	The	inter-disc	space	may	be	identified	by	two	



sharp	peak,	representing	the	cortical	bone	caps,	and	a	large	dip	in	between,	indicating	the	
location	of	the	inter-disc	space.	However,	this	knowledge	must	be	applied	to	the	weights	or	the	
segmentation	will	not	change.	A	crude	way	of	applying	this	method,	which	we	employed,	was	
to	multiply	the	detection	output	by	the	fore	weights.	Thus	low	peaks,	indicative	of	inter-disc	
space,	would	lower	the	fore	weights	at	inter-disc	space	locations.	Causing	them	not	to	be	
segmented.	Future	work	would	include	how	to	more	accurately	apply	the	knowledge	of	inter-
disc	space	to	ensure	they	aren’t	segmented	while	using	a	cylindrical	model.	
	
	
N200	Implementation:	
We	adapted	our	3D-graph	cut	implementation	to	the	N200	dataset,	but	not	without	facing	
certain	challenges.		In	terms	of	positives	when	comparing	to	the	N20	dataset,	many	of	the	Spine	
CTs	in	the	N200	did	not	have	the	aorta	and	had	clean	gradients	that	separate	bone	from	
background.		However,	the	N200	dataset	had	extremely	noisy	images	in	comparison	to	the	N20	
dataset.		More	importantly,	it	had	many	different	parts	of	the	spine	(Lumbar,	Thoracic,	Full	
Spine)	whereas	the	N20	just	contained	lumbar.		Therefore,	significant	changes	to	parameter	
values	and	weight	definitions	for	the	algorithm	are	necessary	for	accurate	segmentation.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	T10:	Various	N200	Patients	
	
Unfortunately,	only	a	single	N200	CT	image	(Spine	0018)	had	been	manually	segmented.		Our	
mentors	encouraged	us	to	segment	more	images	in	order	to	validate	our	model	which	we	are	
still	in	progress	with	in	current	time.		In	order	to	define	weights	in	the	network,	we	could	no	
longer	rely	on	manual	segmentation	as	a	way	to	have	intensity	profiling	of	the	spine	versus	the	
outside.		Therefore,	we	developed	an	automatic	intensity	profiling	function	that	created	a	box	
mask	around	the	centroid	of	the	vertebrate	within	the	image.		In	combination	with	spherical	
distance	weighting,	we	ran	our	algorithm	on	Spine	0018	(Figure	T11)	and	Spine	0001	which	had	



abnormal	and	regular	morphology	respectively.		For	Spine	0018,	we	could	quantify	validation	
and	achieve	a	dice	coefficient	of	0.6545	and	RMSE	of	4.85	voxels.		For	Spine	0001,	we	could	not	
validate;	however,	visually	Spine	0001	looked	segmented	well	(Figure	T12).	
	

	
	
Figure	T11:	Abnormal	Morphology	of	Spine	0018.		A	combination	of	Blur	in	the	CT	image	with	
patient	scoliosis		
	

	
Figure	T12:	Segmentation	of	Spine	0001	Although	we	cannot	verify	quantitatively	without	an	
existing	segmentation.		The	Automatic	Segmentation	looks	well-defined	capturing	interdisc	
space	well	and	vertebrate.	
	
Development	of	Quantitative	Metrics:	
	
Two	metrics	were	used	to	assess	the	accuracy	of	the	segmentation	output,	dice	coefficient	and	
root	mean	square	error	(RMSE).	Both	metrics	require	an	underlying	knowledge	of	the	“true”	
spine	and	thus	the	metrics	mostly	saw	use	when	segmenting	the	N20	dataset.	Dice	coefficient	
ranges	from	a	value	of	0	to	1.	An	output	of	0	indicates	absolutely	no	overlap	where	a	value	of	1	



indicates	a	perfect	segmentation.	RMSE	measure	the	distance	from	the	outside	of	the	
segmentation	to	the	outside	of	the	“true”	spine.	
	
Dependencies: 

Dependency Plan to Resolve Date Expected Contingency Plan 

Access to I-STAR Lab Gain Access Completed - 

Workstation / 
MATLAB 

Gain Access / 
Download 

Completed Remote access using 
TeamViewer 

TCIA Collection (N20 
and N200 Datasets) 

Obtain from Mentors Completed - 

Existing Generalized 
Implementation 

Obtain from Mentors Completed - 

Max Flow / Min Cut 
Segmentation Method 

- - Consult Mentors & 
Explore alternative 

segmentation methods 

Mentor Scheduling Consult Mentors Completed 
(Bi-weekly meetings) 

Skype / Accommodate 
with remote meetings 

Centroid Positions of 
N20 

Obtain from mentors Completed - 

Centroid Positions of 
N200 

Obtain from mentors Completed - 

 
Our project did not have any challenging dependencies since it was mostly a research and 
algorithm based project instead of a design based project.  We had easy access to mentors, and as 
our project progressed we added only two dependencies: the centroid positions of N20 and N200 
which we easily obtained after our first meeting. 
 
Management Summary: 
In the beginning of the project, Ben developed the quantitative validation metrics while Niko 
implemented the slice-based algorithm with intensity profiles and distance weighting.  After the 
initial few weeks, Ben and Niko worked almost entirely together on all parts.  This occurred 
because of how much all the work ended up being related, but also because we had an 
unexpected limiting factor of a single workstation which made a lot of work difficult to 
parallelize. 
 
Management Plan: 
We went into lab together 2-4 times a week for 4-6 hours having daily interactions with our 
mentor Dr. de Silva to update him on our progress.  Additionally, we had biweekly lab meetings 
with the “Spine Cloud” group of the I-STAR lab where we presented our progress. 
 
 



Accomplished: 
Over the course of our project, our project plan evolved due to certain factors and difficulties we 
faced. 
 
The milestones we successfully completed are below. 

1. Milestone 1: Implementation of the 2D Max-Flow/Min-Cut segmentation algorithm for 
the spine 
§ Planned Date: March 9th 
§ Expected Date: March 9th 
§ Status: Completed 

2. Milestone 2: Analyze Basic Parameter Sensitivity on Single N20 Case 
§ Planned Date: March 23rd 
§ Expected Date: March 23rd 
§ Status: Completed 

3. Milestone 3: Implementation of quantitative accuracy metrics (RMSE & Dice) 
§ Planned Date: March 30th 
§ Expected Date: March 30th 
§ Status: Completed 

4. Milestone 4: Use centroid to create axial cylindrical distance weighting 
§ Planned Date: March 30th 
§ Expected Date: March 30th 
§ Status: Completed 

5. Milestone 5: Implementation of the 3D Max-Flow/Min-Cut segmentation algorithm for 
the spine 
§ Planned Date: April 6th 
§ Expected Date: April 6th 
§ Status: Completed 

6. Milestone 6: Create non-axial cylindrical distance weighting 
§ Planned Date: April 6th 
§ Expected Date: April 6th 
§ Status: Completed 

7. Milestone 7: Identify intervertebral disc space using non-axial convolutional cylinder 
§ Planned Date: April 13th 
§ Expected Date: April 13th 
§ Status: Completed 

8. Milestone 8: Analyze Basic Parameter Sensitivity on entire N20 
§ Planned Date: April 18th 



§ Expected Date: April 18th 
§ Status: Completed 

9. Milestone 9: Apply Distance Weighting for N200 
§ Planned Date: April 27th 
§ Expected Date: April 27th 
§ Status: Completed 

10. Milestone 10: Automate Intensity Profiling for N200 
§ Planned Date: May 8th 
§ Expected Date: May 8th 
§ Status: Completed 

 
To Be Done: 

11. Milestone 12: Manually Segment Patients in the N200 dataset for quantitative 
Validation 
§ Planned Date: May 15th 
§ Expected Date: May 15th 
§ Status: Working 

12. Milestone 13: Accurately segment the N200 lumbar without spinous process 
§ Planned Date: May 15th 
§ Expected Date: May 15th 
§ Status: Working 

13. Milestone 14: Accommodate abnormalities in the N200 dataset 
§ Planned Date: May 15th 
§ Expected Date: May 15th 
§ Status: Working 

 
 
Additionally over the course of our project, our deliverables changed. 
 
Original Deliverables 

§ Minimum: (Expected by March 9th) Completed 
1. Access accuracy of the N20 manually segmented validation dataset 
2. Implementation of 3D Max-Flow/Min-Cut segmentation algorithm for the spine 

§ Expected: (Expected by April 20th)  
1. Analysis of parameter sensitivity 
2. Evaluation of segmentation accuracy 



3. Generation of a large N200 dataset for SpineCloud  
4. Manual Segmentation of Patients in N200 for Validation (In Progress) 

§ Maximum: (Expected by May 15th) 
1. Method for patient specific parameter selection 
2. Method to accommodate spine anomalies 

 
Updated Deliverables 

§ Minimum: (Expected by March 9th) Completed 
1. Access accuracy of the N20 manually segmented validation dataset 
2. Implementation of 3D Max-Flow/Min-Cut segmentation algorithm for the spine 

§ Expected: (Expected by May 6th) In Progress 
1. Analysis of parameter sensitivity on N20 (Completed) 
2. Generate and Evaluate Segmentation Accuracy on N20 (Completed) 
3. Automate Intensity Profiling for N200 (Completed) 
4. Manual Segmentation of Patients in N200 for Validation (In Progress) 

§ Maximum: (Expected by May 15th) To Be Done 
1. Accurate Segmentation of N200 Lumbar CT (without Spinous Process) (In 

Progress) 
2. Address anomalies in N200 (spine instrumentation, cancer) 

 
 
Difficulties / Lessons Learned: 

We found that validation in a scientific field must be quantitative.  Therefore, metrics like 
RMSE and dice coefficient must be used objectively in order to determine how well the 
algorithm is working.  Additionally, we both became more familiar with working as a single part 
of a larger multi-scale and multi-year project within a lab setting.  We had to learn how to 
navigate the expectations of different supervisors (Postdoc vs. PI vs. Class Professor). This 
experience was especially fruitful and played a role in how we designed our project timeline in 
order to reach goals.   

Additionally, we learned about the difficulties with tuning algorithms for different 
datasets.  In particular, algorithm accuracy is heavily dataset specific.  While we learned how to 
parameter tune on the N20 dataset in an effective way, the N200 dataset had its own properties 
that made it difficult to translate our findings in an easy manner.  Another difficulty we had was 
that the size of the data set in combination with only having one workstation made it difficult to 
parallelize workflow.  In retrospect, we would have requested two workstations in order to work 
independently and achieve further progress.   
	
Future	Work	
• Accommodate	Irregularities	in	N200	
• Patient	Specific	Parameter	Selection	
• Employ	cylindrical	weighting	in	N200	



• Manually	Segment	more	of	N200	for	quantitative	validation	
	


