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Project	Objective:	
The	overall	goal	of	our	project	is	to	develop	a	state-of-the-art	automatic	segmentation	method	
for	spine	CT	images	using	max-flow/min-cut	optimization.			
	
Here	are	four	project	milestones	that	span	our	initial	work	to	maximum	deliverables	that	we	
hope	to	reach	for	a	successful	project.	
	
• Minimum	deliverable	(3/9):	Extend	initial	algorithm	for	automatic	segmentation	of	spine	CT	

and	larger	datasets		
• Expected	deliverable	(3/23):	Evaluate	accuracy	vs.	parameter	selection	on	N=20	spine	CT	

dataset	(already	manually	segmented)	
• Expected	deliverable	(4/20):	Accurate	segmentation	of	N=200	spine	CT	dataset	from	The	

Cancer	Imaging	Archive	(TCIA)		
• Maximum	deliverable	(5/15):	Develop	methods	to	extend	algorithm	for	patient-specific	

parameter	selection	in	order	to	have	accurate	segmentation	for	a	wide-variety	of	cases.	
	
We	are	motivated	for	this	specific	task,	since	our	work	will	be	a	major	component	of	“Spine	
Cloud”	a	multi-year	project	proposed	by	the	Dr.	Siewerdsen’s	I-STAR	lab.		“Spine	Cloud”	hopes	
to	curate	a	database	consisting	of	patient	demographic	data,	image	and	specific	anatomy,	
surgical	procedures,	and	pathologies.		Once	organized,	we	hope	to	correlate	these	defined	
clinical	variables	and	automatic	image	analysis	to	patient	surgical	outcomes.		By	developing	this	
highly	quantitative	approach	on	how	to	approach	future	spine	surgeries,	“Spine	Cloud”	will	
provide	more	favorable	and	consistent	outcomes.	
	



	
Figure	1:	Spine	Cloud	workflow	
	
A	necessary	component	of	“Spine	Cloud”	is	a	large	database	of	annotated	spine	CT	images	
based	on	accurate,	automatic	segmentation.		Currently	within	the	I-STAR	lab,	segmentation	of	
spine	CTs	is	handed	manually	which	while	accurate	is	often	time-consuming.		While	there	are	
simple	techniques	for	auto-segmentation	like	Thresholding	and	Region	Growing	that	are	
computationally	efficient	and	easy	to	implement,	they	often	fail	to	give	accurate	segmentation.		
With	these	techniques,	each	voxel	is	treated	independent	in	the	CT	image,	which	prohibits	local	
neighborhood	relations	like	smoothness	and	curvature	to	be	accounted	for	during	
segmentation.		Instead,	we	propose	to	treat	segmentation	as	an	energy	minimization	problem	
which	can	account	for	local	relations	by	transforming	the	CT	image	into	a	graph	and	using	Max-
Flow	/	Min-Cut	Optimization	in	order	to	minimize	the	energy	function.			
	
Paper	Selection:	
	
I	have	chosen	to	review	Boykov’s	classic	paper	“Fast	Approximate	Energy	Minimization	via	
Graph	Cuts”.		This	paper	was	first	presented	as	conference	paper	in	the		
“International	Conference	for	Computer	Vision”	in	1999,	and	thereafter,	submitted	to	the	
journal	IEEE	Transaction	on	PAMI	in	2001.		I	have	chosen	this	particular	paper	since	it	details	
how	to	use	graph	cuts	to	minimize	many	different	kinds	of	energy	functions.		The	methods	
detailed	are	highly	versatile	since	many	computer	vision	can	be	formulated	in	terms	of	energy	
minimization	like	stereo,	image	restoration,	segmentation,	and	motion.		I	am	particularly	
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interested	in	this	paper	since	our	own	graph-cut	implementation	that	we	are	using	to	do	binary	
label	segmentation	of	spine	CTs	is	based	off	of	the	theory	in	this	paper.	
	
Paper	Background:	
	

	
Figure	2:	Energy	Equations	
	
Many	computer	vision	problems	can	be	naturally	formulated	into	solving	an	energy	
minimization	problem.		The	overall	energy	function	is	comprised	of	two	factors:	Esmooth(f)	and	
Edata(f),	a	smooth	component	and	data	component	respectively.		For	a	given	labeling	f,	The	
smooth	component	expresses	the	similarity	of	neighboring	pixels	based	on	measurable	
quantities	(i.e.	intensity),	and	the	data	component	expresses	how	labeling	compares	to	
observed	data	or	priors.	While	formulation	of	an	energy	function	is	possible,	determining	the	
minima	is	often	difficult	due	to	computational	costs,	many	local	minima,	and	a	large	possible	
label	space.	
	
Paper	Goals:	
The	authors	hope	to	answer	the	question:	How	does	one	minimize	an	energy	function	in	a	quick	
and	computationally	efficient	manner?		There	have	been	previous	methods	proposed	like	
simulated	annealing	which	can	theoretically	approach	the	global	minimum	of	any	arbitrary	
energy	function.		However,	a	limitation	of	this	approach	is	that	the	methodology	is	restricted	to	
standard	moves	meaning	only	a	single	pixel	can	change	at	each	iteration.		Therefore,	while	in	
theory	the	approach	is	attractive,	often	simulated	annealing	can	be	computationally	expensive	
and	take	exponential	time.			
	
In	order	to	solve	the	problem	in	a	computationally	efficient	manner,	the	authors	present	two	
innovative	graph	cut	methods	α-β	swaps	and	α-expansion.		These	two	graph	cut	methods	allow	
for	large	moves	meaning	many	pixel	labels	can	change	at	each	iteration.		Additionally,	there	are	
aa	number	of	nice	properties	detailed	in	their	results.		For	binary	labelling	an	exact	global	
minimum	can	be	reached	in	polynomial	time.		For	multi-labeling	with	α-expansion,	minima	
have	guaranteed	bounds	of	a	factor	within	global	minimum	
	
Graph	Cuts	Review:	
	
For	a	weighted	graph	with	two	vertices	named	terminals	(α,β	in	figure	3),	the	graph	cut	C	is	a	
set	of	edges	that	separates	the	two	terminals	in	the	induced	graph	such	that	no	flow	can	go	
from	one	terminal	node	to	the	other.		The	cost	of	the	cut	C	is	the	sum	of	the	edge	weights.		
Therefore,	the	minimum	cut	is	the	cheapest	cut	possible	that	separates	the	two	terminal.	
	



	
Figure	3:	Examples	of	different	graph	cuts	separating	the	two	terminals	α,	β	
	
	
	
Example	of	Graph-Cuts	for	Segmentation:	
	

	
	
Figure	4:	Example	of	Graph-Cut	Segmentation	for	Spine	CTs	
	
	
As	an	example	of	graph-cuts	applied	to	images,	we	first	start	with	a	CT	image	of	the	spine	like		
in	Figure	4.		Then,	to	define	the	graph	we	take	each	voxel	in	the	CT	image	and	set	each	as	a	
voxel	node	(gray	ellipses)	and	then	additionally	define	two	terminal	nodes	(orange	and	blue	
circles).	Each	voxel	node	is	connected	through	edges	to	neighboring	voxel	nodes	as	well	as	to	
both	terminal	nodes.		The	weights	are	defined	in	order	to	have	the	best	separation	between	
bone	and	background.		Terminal	node	to	voxel	node	edges	are	determined	by	priors	contribute	
toe	the	Edata	component	of	the	energy	function.		Voxel	node	to	voxel	node	edges	are	
determined	by	measurable	quantities	of	the	data	and	contribute	to	the	Esmooth	component	of	
the	energy	function.		Ultimately,	the	edge	weights	determine	the	overall	energy	function,	E,	
and	the	minimum	cut	which	is	the	cheapest	cut	to	separate	the	two	terminal	nodes	minimizes	
the	energy	function.	
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Proposed	Graph-Cut	Methods	
	
α-β	swaps	
	

	
Figure	5:	Pseudo-Code	for	α-β	swaps	
	

	
Figure	6:	Visualization	of	α-β	swap	
	
Explanation	of	α-β	swaps	
First	starting	with	an	arbitrary	labeling	of	the	graph	f,	we	explore	many	alternative	labelings	f’	
that	are	chosen	with	various	α-β	swaps	where	an	α-β	swap	is	defined	to	be	arbitrary	swapping	
of	labels	for	α,	β	pairs.		Then	the	f’	that	best	minimizes	the	energy	function	is	fhat,	and	if	the	new	
labelling	fhat	has	a	lower	energy	than	the	original	labeling	f,	the	algorithm	repeats	with	fhat	as	
the	new	labelling.		If	not,	then	we	have	reached	the	minimum	of	the	energy	function.	
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α-Expansions	

	
Figure	7:	Pseudo-Code	for	α-Expansion	
	
Explanation	of	α-Expansions	
First	starting	with	an	arbitrary	labeling	of	the	graph	f,	we	explore	many	alternative	labelings	f’	
that	are	chosen	with	various	α-expansions	where	an	α-expansion	is	defined	to	be	a	move	which	
assigns	arbitrary	labels	to	α.		Then	the	f’	that	best	minimizes	the	energy	function	is	fhat,	and	if	
the	new	labelling	fhat	has	a	lower	energy	than	the	original	labeling	f,	the	algorithm	repeats	with	
fhat	as	the	new	labelling.		If	not,	then	we	have	reached	the	minimum	of	the	energy	function.	
	
	

	
Figure	8:	Visualization	of	α-Expansions	
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Results	
	

	
Figure	9:	Image	Restoration	task	
	

	
Figure	10:	Energy	vs.	Time	Table	
	

	
Figure	11:	Energy	vs.	Time	Graph	
	
After	developing	the	two	graph	cut	algorithms	the	authors	tested	their	results	on	3	different	
tasks	image	restoration,	motion,	and	stereo.		I	have	chosen	to	only	details	the	results	of	the	
image	restoration	task	as	the	findings	are	identical	for	the	motion	and	stereo	examples.		Image	

α	–	Expansion α	-	β	swap Annealing 



restoration	is	blurring	an	image	like	the	diamond	image	from	(Figure	9)	on	the	left	and	trying	to	
restore	it	to	its	original	clarity.		The	authors	compared	α-β	swaps,	α-expansion,	and	annealing	
for	this	task,	keeping	track	of	the	energy	values	and	time	for	convergence.		The	α-β	swaps	
reached	the	global	minimum	fast	in	comparison	to	the	annealing.		This	shows	the	power	of	the	
graph-cut	algorithms	as	α-β	swaps	reached	the	energy	global	minimum	in	389	seconds	while	it	
took	>400000	seconds	for	the	annealing	to	reach	the	energy	global	minimum.			
	
	
Conclusion	/	Paper	Assessment:	
	
Pros:	

• Generalizable	to	many	computer	vision	problems	(i.e.	segmentation,	stereo,	image	
restoration,	motion)		

• Computationally	efficient	and	speedy	when	compared	to	the	then-current	algorithms	
• Binary	labelling	guarantees	reaching	global	minimum	
• For	multi-labeling	with	α-expansion,	minima	have	guaranteed	bounds	of	a	factor	within	

global	minimum	
	
Cons	

• The	Smoothness	Functions	are	limited	to	pairs	of	adjacent	pixels	
• Graph	cut	methods	take	a	discrete	approach		
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