Auto-Segmentation of Spine CT for Data-Intensive Analysis of Surgical Outcome

Group 23 Ben Ramsay, Niko Eng

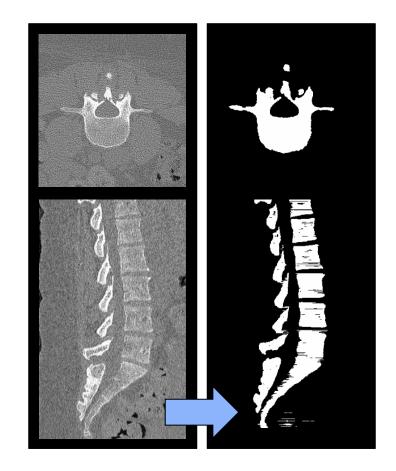
Team Members and Mentors

Team Members

Ben Ramsay Biomedical Engineering 2018

Niko Eng Biomedical Engineering 2018

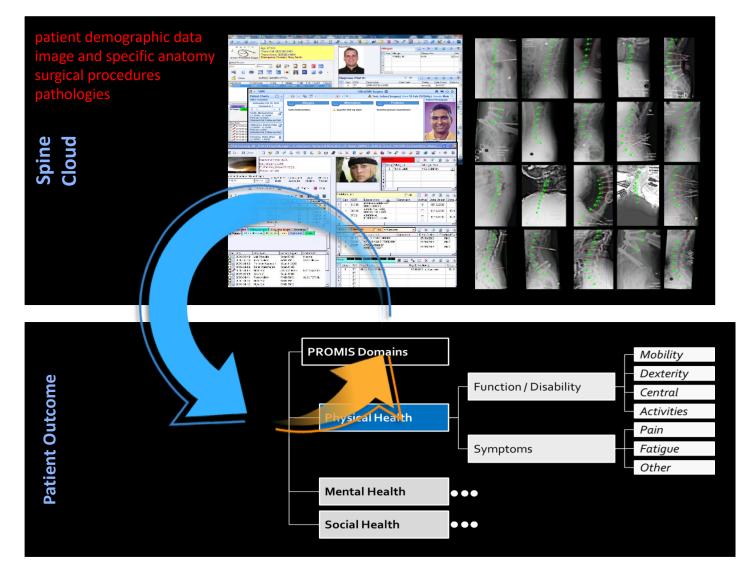
Mentors


Tharindu De Silva, PhD Post-Doctorate at I-STAR Lab

Jeffrey Siewerdsen, PhD Professor Dept. of Biomedical Engineering Dept. of Computer Science

Goals

- Overall: To Develop and Test the "max-flow/min-cut" segmentation method for spine CT images
- Project Milestones
 - **Minimum** deliverable (3/9): Extend initial algorithm for automatic segmentation of spine CT and larger datasets
 - **Expected** deliverable (3/23): Evaluate accuracy vs. parameter selection on N=20 spine CT dataset (already manually segmented)
 - Expected deliverable (4/20): Accurate segmentation of N=200 spine CT dataset from The Cancer Imaging Archive (TCIA)

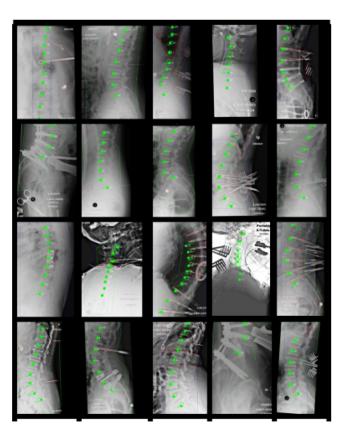


Background and Motivation

 "Spine Cloud" – a big data approach to improve spine surgery outcomes

• Correlate defined clinical variables and anatomical quantification to patient surgical outcomes

• Inform future spine surgeries to create more favorable and consistent outcomes.

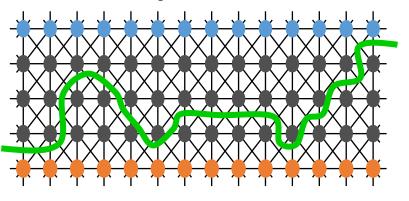


*Classified

Background and Motivation

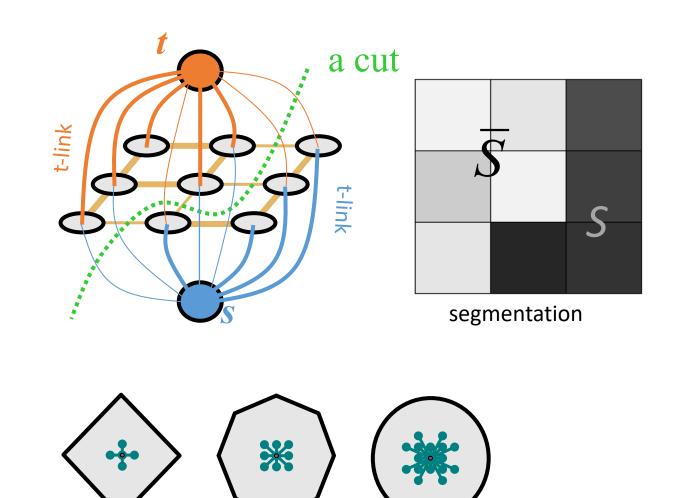
Challenge: A necessary component of "Spine Cloud" is a **large database** of annotated spine CT images based on accurate, automatic segmentation

Manual Segmentation is **time-consuming**, but **accurate** N=20 Dataset took an entire summer to segment



Technical Overview: Auto-Segmentation

- Simple techniques
 - Thresholding & Region Growing
 - Pros: Fast and Easy
 - Cons: Voxels are considered independently → Does not account for local neighborhood relations like smoothness and curvature (which is useful when segmenting anatomy)
- State-of-the-art techniques
 - Max-flow/Min-Cut
 - Machine Learning
 - Level Sets
 - All have comparable accuracies


Graph Cuts

Level Sets

Technical Overview: Max Flow/ Min Cut

- Two types of nodes
 - Voxel Nodes
 - Terminal Nodes
- Nodes connected by edges
- Determining edge weights
 - Hounsfield intensities
 - Gradients
- Parameters
 - Weight-defining parameters
 - Number of neighborhood links

Deliverables

- Minimum Deliverable:
 - Assess accuracy of N=20 segmented dataset
 - Implementation of Max-flow/Min-cut extended to spine CT
- Expected Deliverable:
 - Analysis of Parameter Sensitivity
 - Evaluation of Segmentation Accuracy
 - Generation of a large (N=200) segmented dataset
- Maximum Deliverable:
 - Methods for patient-specific parameter selection
 - Methods to accommodate spine anomalies

Dependencies

Dependency	Plan to Resolve	Date Expected	Contingency Plan		
Access to I-STAR Lab	Gain Access	Completed	-		
Workstation / MATLAB	Gain Access / Download	Completed	Remote access using TeamViewer		
TCIA Collection (N20 and N200 Datasets)	Obtain from Mentors	Completed	-		
Existing Generalized Implementation	Obtain from Mentors	Completed	-		
Max Flow / Min Cut Segmentation Method	_	_	Consult Mentors & Explore alternative segmentation methods		
Mentor Scheduling	Consult Mentors	Completed (Weekly meetings)	Skype / Accommodate with remote meetings		

Project Timeline

		February			March				April				Мау			
		9	16	23	2	9	16	23	30	6	13	20	27	1	8	15
	Code and Documentation															
Pre-Deliverables	Literature Review															
	Gain Familiarity with 3D Data and Software															
	Setup workstation in I- Star Lab															
Minimum Deliverables	Validation of N20 Reference Set															
	Max-flow / Min-Cut implementation for Spine															
Expected Deliverables	Analysis of Parameter Sensitivity															
	Evaluation of segmentation accuracy															
	Segmentation of N200 dataset															
Maximum Deliverables	Patient-specific parameter selection															
	Accommodate spine irregularities															

Breakdown of Work

- Most tasks will be completed together
 - Exercise team coding practices
- Niko
 - Analysis of parameter sensitivity
 - Accommodating spine irregularities (i.e. instrumentation, morphology)
- Ben
 - Evaluation of segmentation accuracy metrics
 - Patient-specific parameter selection

Management Plan

- Biweekly team meetings at I-STAR lab (med campus)
- Weekly meetings with mentors to go over progress
- Code repository and documentation on github

Reading List

- Yuan, Jing, et al. "A Study on Continuous Max-Flow and Min-Cut Approaches." 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010
- Boykov, Y.y., and M.-P. Jolly. "Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images." *Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001*
- Boykov, Yuri, and Vladimir Kolmogorov. "An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision." *Lecture Notes in Computer Science Energy Minimization Methods in Computer Vision and Pattern Recognition*, 2001, pp. 359–374.
- L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.