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Executive Summary 
Sanaria Inc. and the Laboratory for Computational Sensing and Robotics (LCSR) at Johns 
Hopkins University are collaborating on an NIH Small Business Innovation Research (SBIR) 
grant to help scale the manufacture of Sanaria’s viable Malaria vaccine. Malaria presents an 
undeniable public health burden to the global community. Annually, over 200 million people 
suffer from the disease and over 1 million are killed, many of which are children.To help Sanaria 
address manufacturing issues, researchers at the LCSR have formed a collaborative team to 
robotically automate Sanaria’s production process. The production process utilized currently by 
Sanaria involves manual dissection of in vivo mosquitoes to dissect and collect salivary glands 
for further processing. The overall goal of this project is to automate mosquito dissection, an 
expensive, rate-limiting, and training-intensive step in Sanaria’s production process, and enable 
the scaling of the vaccine production.  
 
The scope of this Computer Integrated Surgery II project focuses on the development of two 
major subsystems within the larger automation effort. In particular, this project addresses the 
robotic pick-and-place component and the dissection system component directly. For the 
success of the project as a whole, a collaborative relationship between subsystem developers 
was maintained between the team members working on this course project and those working 
on the larger project as a whole.  
 
This report focuses on the development and testing of a robotic pick-and-place system 
embedded with collaborator-developed computer vision to correctly place a mosquito into the 
dissection system for subsequent processing. With this system, we demonstrated 100% 
grasping accuracy and 90% placement accuracy in a test with 50 mosquitoes. The dissection 
system, which was also addressed under the scope of this course project, attempts to develop a 
system consisting of several modules that decapitate the mosquito, extrude salivary glands and 
other exudate from the mosquito, collect the exudate, and dispose of the mosquito body. A 
linear staging system was developed for the purpose of proving the functionality of the system 
and a more streamlined approach utilizing a rotary stage was proposed and designed. In 
addition to subsystem development, a great deal of project effort went into integration exercises, 
both at the hardware and software interfaces. We intend for this project to continue after the 
conclusion of our work in the hands of our mentors and other students in the future and have 
provided substantial documentation of both our final products and decisions along the way for 
this purpose.  
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I. Introduction 

A. Motivation 
Our project’s motivation is best summarized with this lightly-edited excerpt from the manuscript 
our group members submitted to CASE 2019 (Full paper in Appendix B): 
 
Malaria presents a tremendous public health burden. The World Health Organization estimates 
219 million individuals worldwide were infected with the disease in 2017 and ranked it among 
the top 20 leading causes of death among both adults and infants in 2016 [1], [2]. With 
increasing drug and insecticide resistance, it has become ever more difficult for current 
treatments to maintain efficacy in reducing the prevalence of malaria worldwide [3]. 
Development of malarial vaccines present a promising way forward in the global effort for 
malaria eradication [3]. Progress has been made in the development of the Sanaria 
Plasmodium falciparum sporozoite-based vaccine (Sanaria®  PfSPZ Vaccine), an effective 
vaccine manufactured from PfSPZ extracted from the salivary glands of female Anopheles 
mosquitoes [4]–[9]. Such a vaccine may reduce the burden of the disease by providing immunity 
against Pf, the most common malarial parasite, which was estimated to account for greater than 
95% of deaths caused by malaria in 2017 [1], [10]. 

 
The process of vaccine production requires salivary gland dissection and to date has only been 
demonstrated with training-intensive manual or semi-automated processes, presenting a major 
bottleneck in the scalability of this vaccine. In traditional manual methods, technicians are 
presented with freshly-sacrificed mosquitoes and process them one at a time, removing the 
mosquito’s head with a needle under microscope and squeezing out a volume of exudate that 
includes the PfSPZ-laden salivary glands. The exudate from mosquitoes is collected and 
processed for the isolation of PfSPZ. 
 
The automation of salivary gland harvesting from in vivo mosquitoes has been attempted in the 
past [11]–[13]. However, no literature supports the success of any such process at this time. A 
semi-automated mosquito micro-dissection system (sAMMS) has been developed and 
investigated in prior works within LCSR [14], [15]. In the sAMMS process, a human technician 
uses micro-forceps to sort mosquitoes into cartridges such that their necks extend between 
cutter blades. Then, the blades are actuated to cut off all the heads, and a comb-like squeezing 
device is used to extrude all the exudate, which is collected via a suction device. Early 
experience has shown that this device roughly doubles the throughput of purely manual 
dissection and reduces training time to reach peak performance from 39 to 1.5 weeks [15].  
 
While a demonstrable improvement over manual methods, the sAMMS device was developed 
only as a first step towards a fully automated dissection system to enable large-scale production 
of enough vaccine for worldwide vaccination efforts. This project attempts to further the success 
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of the sAAMS device by learning from its successes and incorporating novel contributions to 
make headway in the development of the fully automated system. In particular, robotic 
manipulation of the mosquito, the entirety of the dissection apparatus, as well as methods to 
improve the dissection system efficiency will be explored in detail. Notions of incorporation of 
the broader project will be made throughout the report, but the focus of this project and report 
will be on the above mentioned three primary objectives. 

B. Scope of Project 
To best understand our project in the scope of the ongoing automation system development 
efforts in the LCSR, we briefly describe the role of our work within the larger effort to develop a 
fully-automated mosquito dissection system for Sanaria, Inc. being undertaken by several 
researchers in the Laboratory for Computational Sensing and Robotics (LCSR) at Johns 
Hopkins University. 
 
We primarily developed a robotic pick-and-place system and automated dissection system that 
will function as subsystems within the fully-automated mosquito dissection system. This larger 
system will ultimately take freshly-sacrificed mosquitoes suspended in liquid media and output a 
collection of mosquito exudate including sporozoite-laden salivary glands. Our concept of this 
dissection system is provided in Figure 1.  
 
First, a staging apparatus will separate mosquitoes and present them one at a time to the robot. 
Freshly-sacrificed mosquitoes sit in a basin of solution beneath the system. A spinning rotor in 
the basin creates a vortex that will carry mosquitoes in solution to the top of a separation cone. 
This cone has channels in one sector down which water will flow onto a ring of orientable 
mesh-bottomed turntables. This ring will rotationally index around the cone so that, by 
controlling the vortex speed and concentration of mosquitoes in the basin, the cups will on 
average have one mosquito on them once they pass beyond the sector of the cone with 
channels. At an index beyond the channel, a camera will image a single cup and a computer 
vision algorithm will determine if a mosquito is present. If so, at the next indexed position, the 
cup will be rotated to orient the mosquito so that the mosquito's proboscis will point radially 
outward from the ring. Finally, the ring will be rotated to an index that a sits parallel to a linear 
stage that will comprise the third subsystem, a dissection assembly line. The development of 
the staging apparatus is described in detail in [13].  
 
The pick-and-place robot will be positioned on the other side of the linear stage and will reach 
over to the cup, grasp the mosquito by its proboscis and drag it onto a cartridge attached to a 
linear stage. Similar to how a human technician would perform dissection, the robot will drag the 
mosquito into a slot and place the mosquito’s neck into notches cut in two parallel dissection 
blades. An overhead camera will be used to provide computer vision feedback of this process. 
The blades will be actuated, cutting the head. After disposing of the mosquito’s head, the robot 
will return to the ring which will have rotated to present a new mosquito. The linear stage will 
index laterally immediately after the mosquito is cut. As additional mosquitoes bodies are 
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positioned on the cartridge, the linear stage will translate and expose mosquitoes to several 
stations at which the exudate can be squeezed out and salivary glands collected. 
 

 
 
Figure 1. Two concept image for automated mosquito dissection system. 3D concept (left) and 
2D concept (right). 

C.Summary of Project Goals  
The goal of the project is to engage in the design, development, and fabrication of several 
mechanical subsystems of a larger automated mosquito dissection system to aid in the 
production of malaria vaccines, as well as develop the software and methodologies needed to 
control and integrate these subsystems with one another and into the larger system. 
Specifically, we aim to: 
 

1. Develop a robotic pick-and-place system for freshly-sacrificed mosquitoes 
2. Develop an automated assembly-line-like dissection system to decapitate mosquitoes 

and extrude and collect salivary glands 
3. Demonstrate the mechanical integration of these subsystems with one another 
4. Demonstrate software integration with several computer vision algorithms developed by 

our collaborators to locate mosquitoes 
5. Design improvements to these subsystems, particularly the dissection system to improve 

efficiency 
 
Specific project deliverables are detailed and evaluated in Section V of this document. 
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II. Hardware Development 

A. Robot and Gripper 
In this project, we use a general-purpose robotic system to conduct our experiments. The 
system is displayed in Figure 2.  In the future, a task-specific robot will either be purchased or 
custom-designed for the task, but while the design is still changing, using a high-precision robot 
that was already in the lab was practicable. This robot is a 4-DOF, linear stage robot by New 
England Affiliated Technologies, Lawrence, MA. A dual-axis X-Y stage is the robot’s base and a 
Z axis is mounted orthogonally (NEAT: XYR-6060 and NEAT: LM-400, respectively). The robot 
also has a rotary axis which we do not use. Each axis is driven by a 12V DC servo motor over a 
100 mm length lead screw. Axis travel is encoded with an incremental encoder. Overall 
positioning resolution of these axes was measured with a dial indicator to be approximately 10 
micrometers. The entire assembly is mounted to an optical table. Robot motion is driven by a 
Galil controller (DMC- 4143), interfaced to a Linux computer by ethernet connection. For our 
project, we wrote a custom python package to communicate and interface with the robot. This 
package is called RobotMove and is detailed in a following section.  
 

 
Figure 2. Robotic system used in this project. Included in this figure is the manual dissection 
apparatus used in early tests. This figure is from [16].  
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We have developed a gripper that is attached to the robot (Figure 3). The gripping mechanism 
has been salvaged from a Alcon Grieshaber tool, designed for tasks such as membrane peeling 
in retinal surgery. The surgical tool parts we use consist of a metal micro-gripper rod that is 
normally-open, as well as a metal sleeve that, when slid forward over the micro-gripper 
component, will close it. These pieces are separately attached to several custom-designed 3D 
printed pieces that are attached to a linear guide. A cam mechanism, powered by a 
model-airplane-style servo motor (HexTronik HXT900), slides the piece attached to the sleeve 
on the low-friction linear guide. This keeps the gripper itself in place while opening or closing, 
allowing the robot to need only to navigate to the position of the object it wants to grasp. The 
gripper is commanded via commands sent to an Arduino microcontroller over serial with the 
Linux computer. The Arduino has been programmed with the appropriate servo angles to result 
in cam movement to result in an open or closed gripper. This shared logic control is detailed 
further in the section describing the RobotMove package. 
 

 
Figure 3. Custom-designed micro-gripper used to grasp mosquitoes. Inset is a close-up view of 
the micro-gripper and sleeve parts taken from the Alcon tool. This figure is from [16]. 
 
As a side activity, not formally in our project scope, we chose to further develop the gripper. 
While the gripper worked, the design is not optimal. It is quite bulky, and would require the final 
choice of a robot to be larger than may be needed. This is because the current gripper was 
originally a short-term solution to the previous gripper design that was plagued by high friction, 
expensive and easily damaged ultrasonic motors, and difficult assembly. We wanted to provide 
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design concepts for future iterations of this gripper, and also provide possible mitigation against 
our dependency on the continued practicability of using the current gripper. The goal was the 
take the general idea of the current system and simplify it. Currently, the system uses a simple 
rotary servo motor and a cam to actuate along a linear slide. The current plan is to use a linear 
actuator with PWM control similar to the servo motor and replace the servo and cam with this. 
The precision linear slide will remain in use to help constrain the system. There is significantly 
fewer components in this design, decreasing complexity. There are two blocks, one for holding 
the outer sleeve of the gripper, and the other to hold the inner tube with the tweezer end. The 
gripper block is mounted on the linear slide and attached to the linear actuator. This block 
moves along with the actuator, opening or closing the tweezer end of the gripper. The design is 
not yet finalized but is near completion, and is displayed in Figure 4. It will be designed to be 
machinable so that it can be manufactured about of stiff materials easily. It is also designed with 
the user in mind, making it easy to replace broken gripper components and install them more 
easily and with greater accuracy. Effort was made to ensure the tweezer end of the gripper will 
have a lot of clearance, allowing less restricted movement when moving in the space of the 
dissection system. 
 

 
Figure 4. Design for next-generation gripper  
 

B. Linear Dissection System 
Manual System: 
For early experiments, while an automated dissection system was being designed, 
manufactured, and tested separately, we used an existing, so-called semi-automated mosquito 
micro-dissection system (sAMMS) device for testing with the robotic system. This device, initially 
developed by a team at Hopkins and improved for production by Keytech, is currently 
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undergoing GMP (good manufacturing practices) validation to be rolled into Sanaria’s 
manufacturing processes. This device is pictured in Figure 2. 
 
Automated System: 
The automated dissection system was developed in two forms. A longer version was developed 
that is intended for full functionality and eventual permanent integration, as well as a short 
version that was developed for the purpose of understanding the functionality of complex and 
error prone components. Both of these systems are depicted in Fig 4 with the major difference 
outlined.  

 
Figure 4. Short, most current dissection apparatus version (left) and longer version of the 
dissection apparatus (right). Difference between the two assemblies is that the longer version 
contains that body disposal component which is outlined in red. Both accommodate a mock 
staging component but this is not shown on the longer version. 
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Figure 5. Dissection system as a whole and the associated key components labelled.  
 
The Dissection System consists of a moving stage rigidly attached to a cartridge. Dissection is 
an intermediate step of the mosquito microdissection process. This step assumes that the 
mosquito has be successfully placed between the blades of the decapitation mechanism by the 
robot, in such a way that the body is aligned with slots, constraining the mosquito for 
subsequent steps. The dissection process consists of 6 discrete steps: robotic placement of 
mosquito (dependent on the robot), decapitation of the mosquito head, extrusion of exudate by 
squeezing, dissection of the exudate from the mosquito body by razor (shaving off exudate), 
exudate collection by vacuum, and finally body disposal such that the cartridge can be reused 
for subsequent mosquito processing. It is important to note that two systems were built such 
that simultaneous development and testing could occur. One stage has a travel length of 200 
mm while the other has 100 mm. The most current design of the apparatus at the time of writing 
this report is on the short stage (depicted in Fig. 5), but the longer stage is intended for 
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incorporation in the final design. Furthermore, the short stage does not accommodate the 
cleaning step as this step was considered rudimentary and one that will not require significant 
testing. The cleaning component is outlined in red in Fig. 4.  
 
The Stage-Cartridge Assembly enables for the relative linear motion of correctly positioned 
mosquitoes from module to module in an assembly line fashion. This consists of a commercially 
available 200mm of travel linear stage (Toauto 200mm Length Travel Linear Stage Actuator) 
that is rigidly mounted on the same support structure as all of the modules. Atop the linear stage 
is a cartridge with notches that are 1.5mm tall patterned 2.5 mm apart. The walls are 1mm wide 
and are placed such that the empty space between two subsequent notches is 1.5mm. This 1.5 
mm pocket is where the mosquito is intended to rest during the dissection process. 

 
Along the linear stage are a series of Modules which are the active components that execute 
the microdissection. All of the modules are contained on a single backplate that is rigidly 
attached to the same base that the linear stage is mounted upon. All of the module components 
are driven by servo motors (HS-55 Feather Servo Motors). The details of each module will be 
described in detail below: 
 
The Head Decapitation module (a.k.a. cutting module) utilizes two stacked parallel blades that 
slide relative to one another laterally to cut the head off the mosquito. This module consists of 
two shoulder bolt, two springs, two 0.002-inch thick blades that are 6.75 mm wide and 12 mm 
tall, two 3mm thick blade substrates (one stationary and one moving), and a servo motor 
actuated cam that will laterally actuate the moving substrate. Furthermore, two ½-inch length 
shoulder screws are mounted on the module backplate with the substrates and springs being 
held up by the screws.This assembly suspends the substrates near the head of the shoulder 
bolt to provide an operable distance between the backplate and where the blades are to be 
positioned. The substrates are etched during laser cut manufacturing so as to provide a position 
for the blades to be glued into. The cam mechanism utilized in this module generates the lateral 
motion of the moving substrate relative to the stationary one. As such, a 3 mm diameter cam is 
rigidly attached to the servo motor, with a moment arm of 5 mm, and positioned into the moving 
substrate slot. When the servo motor is driven, the substrate and blade move and produce the 
desired cutting motion. The assembly can be visualized in Fig. 6 below and it is recommended 
that prior to attempted reproduction, the assembly in solid model and images be studied in 
detail. This module has demonstrated rigorous success and reliability through testing.   
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Figure 6. Labelled front (top left) and top (top right) schematics of the dissection apparatus. 
Workflow and operation visualization of the cutting component on the bottom showing the 
substrates in their passive positions on the left and right and the actuation motion of the moving 
blade in the middle.  
 
A single module is responsible for Exudate Extrusion, Exudate Microdissection, and 
Exudate Collection. This module is mounted on the same backplate as the decapitation 
module and requires adequate alignment of the backplate with the cartridge. This module 
consists of a press component, razor blade substrate, razor blade, housing, cylindrical cam (with 
two 3 mm dowels positioned 45 degrees apart), vacuum needle, and servo motor. This 
component achieves its function by having two components interacting with same rotating cam 
component by means of slots. As such, the cam is mounted onto the servo motor and the 
dowels are positioned at different radii from the center of the cam and at different lengths 
protruding away from the motor. The housing provides normal force to the substrate and press 
to constantly maintain alignment of the components in the lateral plane enabling motion only in 
the vertical plane. Additionally, the slots on the press and substrate make it possible for the 
lateral motion to be decoupled but maintain the vertical motion of the components when 
actuated by the cam. As such, by interfacing the substrate on the external and shorter dowel, 
and the press on the internal and longer dowel, different vertical motion is observed between 
the two effector components. The assembly is initialized such that the press will move a greater 
distance first, followed by the substrate that lags behind the motion of the press. This 
construction of this component and the anticipated motion is depicted in Fig. 7. This 
accomplishes two steps with a single servo motion motion, first pressing/squeezing the 
mosquito and then almost instantaneously the microdissection of the exudate by the razor blade 
from the mosquito body. The collection aspect has been accommodated for a by a precisely 
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placed 16 gage needle attached to vacuum that will collect the exudate from the razor blade. 
We have experienced immense difficulty in the development of this module. While the 
mechanical components have demonstrated rigor and success, poor understanding of the 
mosquito and its relevant properties have brought up immense challenges in the fine tuning of 
this module. The poorly understood mosquito properties including stickiness of exudate, never 
before attempted methods for dissection, and reduced access to fresh (<4 hrs after sacrifice) 
mosquitoes have made the application of this robust mechanical system difficult for the task at 
hand. 
 

 

 
Figure 7. Key components of the squeeze/collect apparatus in front view (top left) and top view 
(top right). The three motion components are shown on the bottom with the assembly passive 
on the left, the pressing motion depicted in the middle, and the collection microdissection step 
shown on the right.  
 
The Body Disposal module is responsible for removing the mosquito bodies after the 
dissection, exudate extrusion, and collection step. This system was designed and hardly tested 
because of the simplicity of design, ease in changing design parameters, and lack of time for its 
implementation. This design utilized three 16-gage needles that are pointed at the midpoint of 
the cartridge slots (where the mosquito should be positioned). The needles use positive air 
pressure in the two outside needles and a stream of water in the middle needle to first remove 
the mosquito body with air pressure, then wash the cartridge with water, and remove excess 
water with air pressure provided by the third needle. This step enables the automatic reuse of 
the cartridge upon the completion of this step.  
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C. Design Concept of Rotary Stage 
The overall goal of our project is to automate the dissection of glands from mosquitoes to 
streamline the processing of a malaria vaccine for Sanaria. The reason we decided to design a 
rotary stage when we already have a linear stage is to further optimize our solution. Currently 
we have a linear stage with three subsystems (cutting, squeezing/gland collection, and 
washing).  
 

 
Figure 8. The Linear stage design currently being used to process mosquitoes with its 
subsystems and the feeding system used to present mosquitoes to the robot to place on the 
cartridge.  
 
The issue with this system is that it is not continuous, once the cartridge holding the mosquitoes 
reaches the end of the linear stage it has to return to its home position wasting valuable time not 
processing mosquitoes. The obvious solution is to take the existing subsystems which are 
developed on the linear stage model and transplant them seamlessly onto a continuous rotary 
design. This allows for continued testing of our subsystems and the downstream dissection 
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process without major design changes to the existing setup. Which allows for tuning of the 
subsystems without needing to integrate the rotary stage which will likely take weeks to 
construct and test.  
 
There were two obvious design avenues for the rotary stage approach; the Concentric Rotary 
Stage, and the Tangential Rotary Stage (see Figure 9). The concentric design, which is 
designed to exist as the concrentic outer ring of the system with mosquito feeder at the interior. 
This design was terminated early due to the scope of the project, with the issue that the 
concentric system was so dependant on other teams design choices. Given the time to do this 
project and the number of different components being designed for the system it did not seem 
reasonable to try to design around a constantly changing feeding system and its associated 
subsystems. However in the future the concentric design does offer benefits over the tangential 
design, in that it can be more compact and could possibly have two processing systems for a 
single feeder (Figure 10). As the larger project comes to a close, it may be beneficial to 
re-investigate this method.  

 

 
Figure 9. Initial concept designs for tangential (left) and concentric (right) rotary stages. These 
where conceptual designs that lead to a decision of pursuing the tangential design in favor of 
concentric.  
 

 
Figure 10. Rough idea of how the concrete design could utilize multiple robots for a single 
feeder and process multiple mosquitoes simultaneously.  
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The Tangential Rotary Stage design is what we currently have a more complete design review 
of. The current design utilizes the same subsystem currently being developed with the linear 
stage design (see Figure 11). This again is to streamline the process of integrating the new new 
design in the future when we have thoroughly developed method of extracting the processing 
the mosquitoes.  
 

 
Figure 11. Rough design of the three subsystem around the tangential rotary stage. Front view 
(left), Isometric view (middle), and top view (right). Rotation of stage is clockwise as viewed from 
the top view.  
 
A significant reason the design was chosen was due to how it can be integrated with the 
existing feeder system. Since the design is tangential it interacts in the same way the linear 
stage currently does with the feeder system. The linear system is something the other designers 
are familiar with and have already designed components with it in mind. The design is simple 
and has a relatively small footprint, it easily integrates the existing subsystems since the stage 
is basically the same as the linear cartridge but wrapped into a circle (Figure 12). Since we want 
a high degree of precision in this system a harmonic drive is being used. This may not strictly be 
necessary but it is believed to only have added benefits. The diving motor is a simple stepper 
motor with an absolute encoder that should be easy to integrate with our existing setup since 
our linear design also uses a stepper motor, however a 24V power supply will be needed for this 
new motor. The harmonic gearbox will make our system a zero backlash system and having a 
homing mechanism design into the system will make an extremely robust and accurate system 
for locating the slots directly under the cutting and squeezing/gland collection subsystems. The 
stage is connected to the driver via a hex shaft which mates the two rigidly. For this design the 
current robot setup will not work. This design only works for an inverted robot design mounted 
above the work space. The robot will need to overhang the two systems and perform its pick 
and place operation from above. This requires a new robot to be designed but both the 
concentric and tangential systems have this same problem.  
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Figure 12. Possible mating of tangential rotary stage with existing feeder stage. This is just a 
suggested setup with the idea that the overhanging robot would not need to rotate after picking 
up the mosquito to place it but other configurations are possible where the cups are closer to 
the cutting mechanism. Isometric view (top right), top view (top left) and side view (bottom). 
Looking at the side view the feeder will need to be on an elevated stand but this is not seen as a 
significant problem which is simple to solve. 
 
This design was presented to one of our mentors for review. After meeting with them a small 
change was made to the design to increase stability of the system in key ways. The stage in the 
system above was not sufficiently supported for a proper rotary stage design so a simple 
support system with bearing surfaces was designed. There is a three legged table like design 
with a standard roller-ball bearing for axial alignment and a thrust bearing for smoothly 
supporting the rotary stage on the table, also it should be noted that the feeder was moved 
closer to the cutter to minimize the travel distance of the mosquito (see Figure 13, 14).  
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Figure 13. Isometric view of the rotary stage design with support structure. 

 
Figure 14. Front section (left) and isometric view (right) of design additions to the rotary stage.  
 
This new design was then again presented to one of our mentors for review. During the 
meeting, a key problem was seen with the design that required a overhaul of the design in its 
entirety. A key design constraint was ignored in the previous design, it was neglected that the 
dragging of the mosquito is key in aligning it for dissection. With the prior design the way the 
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mosquito would need to be dragged is crude and not suitable for our system.The main issue 
with the last design was that the mosquito needed to be dragged either quite a long distance 
and rotated which is not practical nor efficient. To remedy this a new design was suggested 
where the stage was inverted such that the subsystems are interior of the circular stage with 
and octagonal cut out (see Figure 15). This edit keeps some of the design lessons from the last 
design in mind. We have replaced the custom rotary stage and the harmonic drive with a 
precision rotary stage which can be commercially sourced and added our mosquito stage 
directly on top of it. This replacement of the drive mechanism will remove the need to design our 
rotary stage constraints. The stage consists of two plates. The first is a base plate that mates to 
the rotary stage directly (shown in white) it is designed to mount the stand offs and pusher cam 
guide (show in pink), which will be discussed later. The second plate (shown in green) sits on 
the stand offs and is where the mosquitoes will be dragged into the slots to be processed. This 
plate is designed with 8 cartridge slots for placing the mosquitoes to accommodate the cutting 
mechanism with minal design changes from the current linear stage design each slot exists on a 
flat of the octagonal cut out.  Each of the subsystems is designed to be overhanging as before 
but now are placed in the interior of the cut out as mentioned earlier.The design of the cleaning 
unit and the squeezing & collecting unit have not changed other then the manner in which they 
will be mounted. The cutter unit is the only subsystem that posed a new design challenge.  
 
The cutter unit is now mounted via spring loaded guides so when the system rotates the cutter 
will move out of the way of the stage and not stall the system. Originally an additional actuator 
was going to be used to move the cutting mechanism but some members were wary of 
introducing another action unit to the design. To remedy this a cam design was implemented 
(shown in pink), though currently this is only a rough design concept in need of several changes 
it is believed to be a design headed in the correct direction. The cutter carriage has a peg that 
interfaces with a circular cam (seen in pink) which is designed to push the cutter away from the 
cartridge plate as the system rotates. This design choice may also prove to be better than the 
original idea since now the timing of the movement is dictated by a mechanical feature instead 
an actuator controlled in software.  
 
We plan to interface with the feeder system in a similar way and the original design (see Figure 
16). The robots orientation will be the same as suggested for the prior design as well (see 
Figure 17).  The current setup will need to reoriented 90 degrees. Currently we have the gripper 
move forward (away from the robot base) and backward (toward the robot base) we need it to 
be oriented so that the gipper movement is left to right of the base. 
 
This design is far from a finalized version and requires some modifications before a physical 
prototype should be made, but overall it serves as a strong starting point. It includes most if not 
all the needed components and how they interact with the stage and feeder system. What is not 
included is a detailed method of fixturing each of the overhanging subsystems but this is 
something that is relatively easy to design as a more concrete design is developed. The cam 
mechanism is crude at best and is missing crucial elements it simply serves as a general 
concept of what type of mechanism we are envisioning. The design though incomplete is close 
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to something that we think can be quickly prototyped and iterated for future development of this 
system.  
 

 
Figure 15. Rotary table design revision to accommodate mosquito dragging, two isometric views 
of the inverted rotary stage design highlighting different key features. 
 

 
Figure 16. Isometric view of the new system and how we plan to interface with the feeder 
system. 
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Figure 17. Rough idea of robot position relative to the system. Highlighted in red is the relative 
workspace of robot gripper end effector.  

III. Software Development 

A. Architecture 
This section details the design of the software used to calibrate, control, and automate the 
robotic pick-and-place and dissection systems. A block diagram of the software structure is 
given in Figure 18. At a high-level, the systems are controlled using Python scripts running in a 
Linux machine. There are distinct scripts to perform distinct tasks, for example, a separate script 
is used to calibrate the system than to manipulate mosquitoes. However, each of these scripts 
make use of utility packages to perform tasks such as computer vision or communication with 
hardware. All actuator commands go through a low level controller - the robot is controlled 
through a Galil controller, while the servos and steppers involved in the robot gripper and 
dissections systems are controlled via commands from an Arduino. We introduce the main 
workflow of the automated system and detail several important components in its realization, 
namely calibration techniques, the utility packages that allow for software - hardware interaction, 
and the integration of our system with computer vision algorithms. These computer vision 
algorithms developed by our collaborators Prasad Vagdargi and Hongtao Wu that are not 
members of this project. While we did not develop this code, we were responsible for using it so 
that it could be used to automate our physical systems. 
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Figure 18. Block diagram of software architecture and the interfaces with hardware  

B. Calibration Procedure 
A “hand-eye” calibration must be performed to find the transformation between robot and 
camera coordinates in order to determine where to move to grasp a mosquito. We implement 
the common calibration technique of commanding the robot to travel across a grid within its 
workspace, recording its position in both coordinate systems, and then using a Bernstein 
polynomial fitting to fit a mapping between these two systems. In our case, this has the added 
benefit of correcting for any systematic errors in robot movement or camera lens distortion.  
 
Earlier students on the project had developed a computer vision technique to find the robot’s 
tooltip, when painted blue, in an image. We had to improve upon this technique as it was not 
very robust. Any objects in the background such as the robot when it moved into view, or even 
the shadow of the gripper could produce false positives. We discovered that we could greatly 
increase the chance of accurate detection by cropping the image into a small region where the 
tooltip would be mainly featured. This was achieved using the procedure displayed in Figure 19. 
A region (denoted by the red border) is defined in which the robot will move in a grid. A grid size 
is selected (e.g. 100 points in a 10x10 grid). The tooltip position is determined at the starting 
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location, and after one lateral and vertical movement. From there the displayed grid is 
generated which estimates the approximate point at which the tooltip will be at each point as it 
moves through the commanded grid. The full image is cropped to just a small area around this 
point (right side of Figure 19). We observed accuracies less than 50 microns using this 
calibration technique. A detailed walkthrough for performing the calibration procedure is given in 
the next section. 
 

 
Figure 19. At left, a stepwise demonstration of the estimation procedure of robot tooltip location. 
At right a demonstration of using that location to crop the image down to mainly feature the 
tooltip. This led to improved detection and accuracies in the 50 micron range. 

C. High-level Automation Procedures  
Identification of Mosquitoes (Image Processing) 
We have used three main image processing procedures to detect mosquitoes and identify the 
location of certain features on their bodies. Two are based on the ‘deep network’ computer 
vision algorithms that our colleagues have developed. The first is a segmentation algorithm that 
can roughly identify a mosquito’s location from an overhead camera, but needs a high 
resolution, close-up image to perform the segmentation itself, determining the approximate 
regions in the image where the head, body, and proboscis of a mosquito are. The second 
method detects a bounding box around mosquitoes and identifies 7 key points on the 
mosquito’s body (Figure 20). The third procedure involves replacing computer vision with a 
human user, having them click locations on an image and having the robot and code respond as 
if that was the point determined by a computer vision algorithm. This user-driven image 
processing component was important both for early in the project, before the vision systems 
were developed, and later for unit testing just our mechanical systems. 
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Figure 20. At left the segmentation computer vision algorithm, at right is an example of the 
keypoint computer vision algorithm output with the keypoints labeled 
 
Robot and Dissector Motions: 
As we integrated subsystems and vision algorithms the behavior of the robot had to be changed 
to accommodate physical limitations or requirements. Generally, we had three different 
implementations of automated motions that we developed, which will be presented in the order 
they were developed to demonstrate the progression of system integration. 
 
The general procedure has remained fairly consistent throughout the project. An image is 
acquired of the workspace and a mosquito is located. The robot is commanded to move to a 
point above the mosquito’s proboscis. Here, with an open gripper, it drops down to the level of 
the stage and closes the gripper to grasp the proboscis. The mosquito’s head is slightly lifted 
above the stage and it is dragged towards a slot in the cartridge. The process of dragging the 
mosquito, as well as finally dragging it into the slot acts to straighten out its orientation. The 
neck of the mosquito is then identified in an image and transformed into robot coordinates. An 
offset between the neck and the location of the gripper tooltip is computed and the robot lifts the 
mosquito’s head up, pulls it over the notch in the blades, and drops it down. If the alignment is 
correct, the neck will be within the blades such that they can be actuated and the head will be 
removed. At this point, the robot pulls away, drops the head, and is ready to collect another 
mosquito. When using the automated mosquito dissection system, the body can then be 
shuttled to a squeezing station where exudate, including the salivary gland, can be squeezed 
out. It should be noted that at this time, the height of surfaces, location of the slot, and location 
of minimum blade clearance must be determined in robot coordinates (encoder counts) via a 
manual calibration stage. In later iterations, it would be ideal to add some fiducials to the setup 
and calibrate to these, inferring the other values from the CAD models. 
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We began the semester without any computer vision algorithms, so we accomplished these 
tasks by having a user click on an image and reading in the pixel value they clicked on. We also 
used a manual dissection system, having not designed and manufactured the automated 
dissector at the time. The robot motion was simply what was described in the last paragraph. 
This motion had to be adapted when we integrated our system with the segmentation vision 
algorithm. As the camera needed to get close to the mosquito in order to produce accurate 
segmentations, we mounted a camera onto the robot itself in addition to using the overhead 
camera in the previous setup. We would detect the general region of the mosquito in the 
overhead camera and then navigate to the centroid of that region plus an offset so that the 
mosquito was in the image, but the gripper was not touching it. Then we could take an image, 
determine the proboscis location, grasp the mosquito, and continue with the next steps as 
normal. This robot trajectory is shown in Figure 21. This is the trajectory that was used to collect 
the data that we discuss in the manuscript we submitted to CASE 2019 [16]. To summarize 
these results, we tested 50 mosquitoes and saw 100% accuracy in grasping the mosquito and 
90% accuracy in placing it in the correct place in the blades.  
 

 
Figure 21. Robot path is shown when using the segmentation computer vision algorithm and the 
manual dissection system (sAMMS). This method uses an on-board camera that has to get 
close to the mosquito to get a good image, hence the ‘b’ action in the figure. This figure is from 
[16]. 
 
We then integrated the keypoint detection computer vision algorithm. This allowed some 
simplification in the robot trajectory, as all of the imaging could be performed with the overhead 
camera, cutting out the extra robot movement and image acquisition that was added for the 
segmentation algorithm. This was equivalent to cutting out waypoint ‘b’ in Figure 21. We only 
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did preliminary tests in this setup as the automated dissection system design was completed 
and we moved on to integrating that setup. Generally we saw great mechanical results and the 
vision worked well with picking up the mosquito, but not with determining the offset for correct 
placement. 
 
Finally, we integrated the robotic system with the automated dissection system, having only 
used the manual system until this point. This system has a more complicated geometry that had 
to be accounted for, as demonstrated in Figure 22. With the automated system we were also 
able to automatically actuate the blades, which proved to result in cleaner, more consistent cuts.  
 

 
Figure 22. Robot path with the integrated robot and automated dissector system using the 
keypoint vision algorithm. All of the image processing is done from an overhead camera, and 
thus a less complicated path is needed to pick up the mosquito, though the difference in 
stage-to-cartridge height has to be accommodated for. 

D. Utility Packages 
The following are two utility packages that we wrote specifically for this project. A general 
overview of these packages are given here. Function-specific descriptions and input-output 
documentation is given in Appendix A. 
 
RobotMove:  
This custom-developed package is the conduit through which control of the robotic system and 
gripper is accomplished. The package is instantiated as a class and contains functions which 
allow for communication with lower level Galil and Arduino controllers to initiate movements. 
Additionally, several features for user convenience and system safety are implemented.  
 
At first, this package mainly was implemented as a wrapper for the existing Python Galil 
communication library. Working with the Galil library directly is unintuitive, as commands are 
essentially in assembly language. At this early stage commands such as initializing setting and 
querying speeds, accelerations, gains, etc. were implemented. To physically move the robot, 
two commands were implemented for relative and absolute commands within the robot 
coordinate system where values are measured in encoder counts. As the project evolved, this 
package became the ideal home for several other feature improvements. The two most 
substantial improvements were the integration of the robot gripper communication protocol into 
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this package (and into Python and Linux entirely) and the development of a “Allowed Volumes” 
suite of functions that drastically improve the safety of the system when operated by new users, 
which will be crucial for the transition of this project to new students in the future. 
 
Communication with the Arduino is done over serial communication. We essentially use the 
Arduino in this project as a cheap, easily integrable I/O board, with the added feature that it can 
share more of the programmed logic than a typical I/O board would. The high level Python code 
will only send a command to the Arduino that effectively represents a command to “connect”, 
“open”, “close”, or “disconnect”. When first connected, the Arduino is set into a waiting loop, with 
the servo motor deactivated without power. This prevents motor chattering that leads to early 
burnout of these inexpensive servo motors. Once the Arduino has been sent the “connect” 
command, it then waits for commands to either “open”, “close”, or “disconnect”. The function of 
these commands are straightforward. It should be noted that the angles to which the Arduino 
moves the servo to drive the cam to either an open or closed position are stored locally on the 
Arduino’s flash memory. This logic sharing decision involves a trade-off between user 
transparency and ease of tweaking these values, with system safety as commanding the wrong 
angle could damage the system. 
 
The final notable feature in the RobotMove package is the inclusion of a user-friendly way to 
add, remove, and enforce “allowed volumes” in which the robot can be commanded. This 
feature is defaulted on, and will prevent robot motion if any requested move of the robot would 
land it outside of any predefined allowed volume. The user adds one of these volumes by 
selecting two corners of a rectangular prism in the robot’s coordinate system (Figure 23). These 
values would be given in encoder counts. Any rectangular prism in the space can be defined by 
a corner with the lowest dimension of the space for each axis and a corner with the highest. 
These values are saved in a file and is loaded into class variables when RobotMove is 
instantiated in a higher-level script. A simple check is done against these regions before any 
commanded movement is sent to the Galil controller.  
 

 
Figure 23. Visualization of Allowed Volumes in the robot’s workspace. The asterisks represent 
the corners that the user would define these regions with. 
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DissectorMove: 
This package is based off of the RobotMove package, but provides serial communication 
commands to an Arduino to perform the low-level control on the actuators for the linear 
dissection system. The software design is shared between the two packages - it is instantiated 
as a class and contains functions that can be called in higher-level scripts to command motion. 
In this way, the dissection system and robotic pick and place system were integrated 
mechanically and could be controlled from a single Python script. Physical commands include 
actuating the cutter and squeezer mechanisms (which are controlled with servo motors) and 
incrementing the cartridge position (which is controlled with a stepper motor). In the future, the 
hardware control of the dissection system and the gripper would likely be combined onto a 
single Arduino or I/O board, at which time DissectorMove and RobotMove might make more 
sense as a single package. 
 

E. Arduino Code 
The Arduinos are essentially used as combination I/O ports for the PC and low-level controllers 
for the motors. Eventually, these functions would likely be moved into the robot controller, or 
some dedicated programmed logic controller (PLC) or data acquisition (DAQ) board, but the 
Arduinos are cheap and easy to implement at this stage of development. 
 
They communicate with the computer over serial. There is a walkthrough in the comments at the 
top of the RobotMove package if there is issues getting this connection to work.  
 
The microcontroller on the Arduino loops constantly. A connected_state boolean is off at 
startup. At each loop, the serial buffer is checked. If the computer has sent something, the 
Arudino reads this as a string. If the string containing the command to connect is received, the 
connected_state boolean is set and motors are powered on. Otherwise, the string is ignored. 
Once in the connected_state, anything sent is assumed to be a command. These commands 
each will run a corresponding set of code programmed in the Arduino. The simplest is a 
command to disconnect, which powers off the motors, and puts connected_state back to False, 
returning the Arduino to the outer loop of rejecting all strings that are not the connect command. 
Other commands will instruct actuators to move, e.g. setting a servo motor to a certain angle to 
move the cam and close the gripper, or running through a series of commands to move the 
stepper motor. 

IV. Walkthrough of Key Functionalities 
Functions can be run directly from the terminal if that is your preference, but it is often easier to 
do things through the Pycharm IDE as you can debug, make changes quickly, and there is a 
nice interface for committing and pushing things to the git repository. You should open Pycharm 
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from the terminal (Ctrl+Alt+T) and type in “pycharm-community”. This ensures that you have the 
correct variables, dependencies, etc. whenever you run a program inside of Pycharm. 
Otherwise, it tends to have some issues running the ROS components correctly. 
 
All code is housed in the mosquito-robot repository, which is on the LCSR Gitlab at 
(https://git.lcsr.jhu.edu/mosquitoproject/mosquito-robot). This is a private repository, so you will 
need to request access. You first must create an account by logging in with your JHED 
credentials. On the Linux machine in the Lab, the repository is located at 
/home/sanaria/mosq_ws/src/mosquito-robot 

A. Camera Calibration (Perform and Check) 
This involves a calibration between the camera and tooltip. As such, it will not have to be 
performed every time you use the robot, or even every time changes are made to the system. 
Recalibration is required if the gripper is changed (e.g. remounted) or the camera is moved. The 
calibration is performed using the function ‘run_calibration.py’ that is located in the main 
directory of mosquito-robot. The comments at the top of this file provide a walkthrough for 
completing the calibration, which is summarized here. 
 
The calibration is performed on a plane, mapping out a grid of points the robot moves within the 
image. The user must determine the size of this plane/rectangle over which they want to 
perform the calibration. This must be done manually by looking at the tooltip in the image. Place 
a white background in the field of view (e.g. paper). The robot will move at the height (C-axis 
value) at which it starts, so try to make this as close to the anticipated operating height as 
possible (e.g. the height of the cartridge/cup surface). 
 
To start the camera: 

- First start ROS: open terminal and type “roscore” 
- Start the ROS publisher that streams images from the camera. Open another terminal: 

“python mosq_ws/src/mosquito-robot/cv_camera/scripts/rospub_for_cal.py” 
- Note: this step assumes your terminal is open in the ‘/sanaria/home/’ directory, 

adjust the address as needed 
- Note: this ‘rospub_for_cal.py’ file turns off auto exposure for the camera and 

increases the exposure substantially as this has been proven to help the 
computer vision algorithm that finds the tooltip in the image. Future work should 
be completed to make the image recognition more robust. Ideally, you could just 
run the calibration with the standard image publisher that is doing auto exposure: 
‘rospub.py’ which is located in the same directory.  

- View the image. Open another terminal and type “rqt_image_view” 
- The raw image will be on ROS topic ‘/cv_camera/image_raw’ 

- You will also want to open another instance of ‘rqt_image_view’ so that you can view a 
second ROS topic ‘/tooltip_view’ that will begin publishing images only once 
‘run_calibration’ is started.  
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To define the region to perform calibration in: 

- Move the robot to the top right corner of the rectangle you want to calibrate in the image 
(see Fig. 19 for additional clarity). You will have to do this manually e.g. using the 
‘jog_robot.py’ function in the main directory of mosquito-robot. You should save the 
location of the robot at this point and use an absolute move (e.g. in jog_robot) to move 
here anytime you want to start or restart the calibration. 

- Determine the side lengths (in encoder counts) of your rectangle by jogging the robot. 
These values will be set as “x_range” and “y_range”. “x” is top to bottom of the image, 
“y” is left to right. 

- Determine grid size by setting x_cylces and y_cycles  
 
To run: 

- Once the above parameters have been set, jog the robot to the starting position (top 
right corner of rectangle) 

- Run the function. Calibration will proceed automatically - monitor performance via 
rqt_image_view 

- Adjust lighting as needed if the computer vision does not seem to be performing 
correctly - the small green dot should be on the tooltip in the 'tooltip_view' image 

 
To check the calibration: 

- Quantitatively: after the calibration is complete, the function ‘evaluate_calibration.py’ will 
be run, which will display some statistics and plot the actual and predicted tooltip points 

- Qualitatively (e.g. to check if you knocked something out of calibration): 
- One simple solution is to put something distinct (like printed paper) in the 

background and use ‘move_by_click.py’. Click on some feature in the image and 
see if the tooltip goes there 

- A more accurate solution is to run a ROS publisher that puts the estimated tooltip 
position onto the image. To do this, start ROS (‘roscore’) and in another terminal 
run “python 
mosq_ws/src/mosquito-robot/cv_camera/scripts/rospub_with_tooltip_calibration.p
y”. View the image in ‘rqt_image_view’. It will be published to ROS topic 
‘cv_camera/image_with_tooltip_est’ and will display a red dot at the estimated 
location of the tooltip. Visually compare this with the tooltip where you see it in 
the image. 

B. Using RobotMove/DissectorMove packages 
To use RobotMove in a function, import the file into your code and instantiate the class, e.g.: 
from utilities import robot_move 
RobotMove = robot_move.RobotMove()  # Create instance of RobotMove class 
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This creation of class instance will commence an initialization ( the __init__ function in the 
package) that includes connection to the Galil controller. At this stage the robot will load in data 
involved in two safety features of the system: 
 

i. Checking encoder values (encoder value loss due to shutdown detection/prevention): 
Any time the robot is appropriately disconnected (i.e. a 
RobotMove.end_communication() call at the end of a script), a data file called 
“encoder_at_shutdown.txt” is updated with the current values of the encoders. At startup 
(at the class instance in the code) the system will ask the robot for the current encoder 
values and compare them to this file. If they are different, the user is notified, the two 
sets of values are displayed and the user is asked if it is okay to continue. Note, this 
discrepancy could be due to:  
1) Previous abrupt end of code without closing communication - would be okay to 
continue  
2) Power outage (all zeros) - may consider using reset_encoders_from_file() in this case  
3) First 1 occurred, then 2. In this case, would have to re-home 
 
ii. Importing allowed volumes (to prevent collisions): 
Allowed volumes (which are explained in detail in the previous section) are saved on the 
computer and will automatically import at initialization. This effectively ties the allowed 
volumes to the robot, not the code instance, which is the preferred behavior. 

 
Any functions that explicitly relate to the robot can be carried out via function calls (e.g. 
RobotMove.move_relative()  ). The inputs and outputs of these functions are well-documented 
in comments within the code and in the appendix of this report.  
 
Before running any functions to actuate the gripper (e.g. RobotMove.open_gripper()  ), the 
command RobotMove.begin_communication_arduino() must first be run. This is separate from 
the __init__ function as often in development the robot will be jogged around and initializing the 
communication with the Arduino includes a small start-up delay that you can skip in those 
cases.  
 
Any code that uses RobotMove should always end with RobotMove.close_communication(). 
This will ensure that the gripper servo motors powers down and will save the encoder values to 
a file for potential restoration in the event of a power outage.  
 
DissectorMove was modeled off of the arduino communication in RobotMove, so using it is 
essentially the same. To use: 
from utilities import dissector_move 
 
DissectorMove = dissector_move.DissectorMove() 
DissectorMove.begin_communication_arduino() 
 

Confidential         34 



 

Again, always close with DissectorMove.close_communication() so that the motors turn off. 
 

C. Working with Allowed Volumes 
These are basically the inverse of obstacles, instead of defining regions where the robot cannot 
move, the regions in which it can move are provided. This should be a bit “safer” in terms of 
potential damage to hardware. 
 
Each allowed volume is a rectangular prism in the A,B,C (i.e. cartesian) axes of the robot and is 
defined by the two corners of this volume that have the lowest and highest values in encoder 
counts respectively. 
 
Allowed volumes are maintained in a data file on the computer and are loaded into the 
RobotMove class as a variable when it is initialized in code. This keeps these values consistent 
between code and operators. The allowed regions will likely need to be changed in the event of 
hardware changes, either to the gripper, or to the workspace of the robot. This is accomplished 
through the suite of interface functions in the RobotMove package (where the inputs and 
outputs are well-documented), which are easily accessible via commenting and uncommenting 
lines in the manage_allowed_volumes.py code in the main mosquito-robot directory.  
 
Each allowed volume has an associated index, which can be seen along with the defining points 
of that volume using RobotMove.list_allowed_volumes(). Each time a movement is commanded 
to the robot, the goal location is checked to see if it is within at least one of these volumes. The 
check is done in the order of index number, and will stop as soon as an allowed volume has 
been found (and errors out if none is found).  
 
More volumes can be added using RobotMove.add_allowed_volume(), and can be removed 
using RobotMove.remove_allowed_volume() either by index number, or via the clear_all 
optional variable.  
 
It is worth noting that RobotMove can be instantiated with the allowed volumes feature disabled, 
but this should be only done in rare instances when jogging the robot to determine new bounds 
for allowed volumes and should be done with immense caution as nothing prevents the robot 
from moving into locations that could damage itself or other equipment. This is completed using 
an optional boolean limit_to_allowed_volumes in the initial RobotMove call. 

D. Loss of Encoder Counts / Homing / Power Outage 
As the encoders are incremental, not absolute, anytime the controller loses power, the encoder 
values will reset to zero at the position the axes are at when the robot controller regains power. 
Without proper controls, this could cause damage to equipment, and require time wasted 
homing the robot to restore the correct location values. As such, as described in the “Using the 
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RobotMove Package” subsection above, there is a data file saved on the computer that contains 
the encoder counts when the robot was last powered off. These values are compared to the 
current values at startup and will ask the user to confirm that any differences are acceptable 
(again, see detailed information in the aforementioned subsection). 
 
If there was a reason to restore encoder values from this file (e.g. the power was turned off, but 
you know that the communication was shut down with RobotMove.end_communication() before, 
so the saved encoder values are correct), this can be accomplished via 
RobotMove.reset_encoders_from_file().  
 
If the correct course of action is to home the robot (e.g. a power outage, but the saved values 
are suspected to be wrong) this can also be done, but takes more caution and time. Homing 
takes advantage of the Galil functionality for this task. The axis being homed runs (at whatever 
currently set speed, which may be quite fast) all the way in the negative direction until it hits a 
limit switch, then it runs forward until it detects a change in encoder values and sets that as 
zero. Note especially that the robot will move all the way to the negative end of that axis, and 
remain there at the end of homing. Care must be taken in the starting location of the robot 
before each homing move is initiated. Homing of an axis is performed using the 
RobotMove.home_axis() command. A starting point would be to look at the 
‘sanaria_perform_homing.py’ function in the main mosquito-robot directory, but do not blindly 
run this script as the values to bring the robot back to a favorable starting location for each 
axis before homing will be dependent entirely on the current setup of objects in the robot’s task 
space and thus must be customized for each homing case. 
 
Remember, the worst case is to cut power to make the robot stop before it hits something, 
which doesn’t set you back far, especially if you are actively homing at the moment. 

E. Running move_mosquito_integrated.py 
At the writing of this report, this is the most recent high level control code. While the specifics 
may become obsolete, some of the initial setup will likely remain applicable to future testing 
setups. 
 
To start: 

- Make sure you opened Pycharm through the terminal "pycharm-community" in order to 
get all of the correct dependencies! 

- To view the behind blades camera: 
Open new terminal and start camera capture program: "guvcview", go to Video Controls 
and select "USB Microscope" (to save a video, a new path and file name can be created 
under video-> File) 

- To view the behind press camera: 
Open new terminal and start camera capture program: "guvcview", go to Video Controls 
and select "USB Camera" 

Confidential         36 



 

- Start ROS: Open terminal: "roscore" 
- Start overhead camera image capture 

Open new terminal "python mosq_ws/src/mosquito-robot/cv_camera/scripts/rospub.py" 
- To view overhead image: 

Open new terminal: "rqt_image_view" 
Change ROS topic on the rqt image view to "/cv_camera/image_raw" 

- Turn on the light sources 
- Open Kazam (purple camera icon) to record screen. To stop recording or start if opened 

before, press camera icon at top right of screen 
- Also save the views from the 2 guvcview (hit capture, and press again to stop) 

 
Place the mosquito onto the cup before starting, positioning the proboscis approximately in line 
with the vertical of the image. Then the program can be run. There is a boolean use_CV that 
can determine whether the keypoint detection CV method will be used, or whether the user will 
be presented with an image on which they will click (to simulate the “best computer vision 
method”). This allows for the mechanical components to be tested separately from the vision 
system(s). There are also popup confirmations for the user asking if the next step in the process 
should be completed or skipped. This is helpful for development, when things may not be 
working right all the time and skipping back to the beginning of the test can save a lot of time. 
However, once official testing is being conducted, these confirmations can be turned off, 
allowing for the process to run more autonomously.  
 

V. Deliverables 

A. Original Deliverables  
Our deliverables were broken into three levels of achievement: a minimum, ideal, and a 
maximum. Originally our minimum requirement concerned the development and improvement of 
prototype robotic and dissection systems that had been developed previously by members on 
this team and our colleagues. The system as it existed had several incomplete or undeveloped 
subsystems. For example, achieving this deliverable required the design, implementation, and 
testing of a squeeze mechanism, gland collection device, and body disposal subsystems, all of 
which had conceptual designs, but no functional prototypes at the start of the project. Our ideal 
goal was threefold; a written report detailing the mechanical system integration (no use of 
computer vision), the automated dissection of 50+ mosquitoes, and a written report of the 
design of a new rotary stage concept. This goal of this deliverable was to produce quantitative 
results indication the viability of system design concepts as well as shed light on specific issues 
with component manufacturing or integration. We also planned to develop a clear design 
concept of a rotary stage design, which would improve efficiency over what was the current 
dissection concept: a linear stage design. Our maximum deliverable was similar to the ideal 
except it required us to have completed a written report detailing the system integration with 
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vision, the automated dissection of 100+ mosquitoes, and a physical prototype of the rotary 
stage.  
 
At about midway through our project timeline there was a change in priorities at the larger 
project level. At the suggestion of our mentors, we re-ordered our goals. In order to make a 
paper deadline we shifted focus to getting the computer vision algorithms integrated with the 
robot and performing tests with a manual system before attempting mechanical integration with 
the automated dissection system. This lead to us being in an odd position where we had 
finished a good percentage of maximum deliverable about a quarter of our ideal and had not 
achieved our minimum (see Figure 24). By working on the vision system for the paper, our 
deliverables structure no longer made much sense. This resulted in a restructuring to what we 
believed was a more reasonable set of deliverables (see Figure 25).  

B. New Deliverables  
Our new minimum deliverable was to develop a report and videos of the picking and placing of 
50 mosquitoes using an integrated vision system without dissection of the mosquitoes. This 
better aligned with the tasks required of the team early on in the project. Our new ideal 
deliverable had two parts; first to demonstrate mechanical system integration via the automated 
dissection of 50 mosquitoes and the second to provide a written report detailing the design 
concept of the rotary stage dissection system that was deemed acceptable by our mentros. Our 
new maximum deliverable was an extension of the ideal deliverable. With the first objective 
being expanded to include gland collection (which is seen as a significant hurtle) and to test with 
100+ mosquitoes. In terms of the rotary stage design, the maximum deliverable would have 
been to fabricate the first generation prototype so that it could be tested. 

 
Figure 24. Table of our original deliverables as defined at the beginning of the project 
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Figure 25. Table of our redefined and final set of deliverables as defined at the midpoint of our 
project 
 

C. Evaluation of Deliverables  
Based on our current progress and the redefined set of deliverables we have achieved our 
minimum and have approached partial completion of our ideal.  
 
Our minimum deliverable of integrating vision with the pick and place robot was achieved. We 
successfully picked and placed 50 mosquitoes using the robot with the integrated vision system. 
Video recordings of these trials were taken and the data from these trials were used to report on 
the accuracy of the system. This report was written for publication in the International 
Conference on Automation Science and Engineering (CASE). This paper (see Appendix B), 
which is currently under review, constitutes our minimum deliverable. The key automation task 
of picking and placing of mosquitoes from a staging apparatus into a dissection assembly was 
demonstrated in these tests. In the processing of 50 mosquitoes, we demonstrated a 100% 
grasping accuracy and a 90% accuracy in placing the mosquito with its neck within the blade 
notches such that its head can be removed [16]. These results were promising since this is a 
difficult and non-standard pick and place  task and the failures provide valuable insight into how 
to improve the system in future iterations of the system as a whole.  
 
Our ideal deliverable was partially achieved. The ideal deliverable had two parts; the first was a 
video of a processed mosquito from presentation to squeezing out of the glands for 50 
mosquitoes, the second was a written report of design concept of our rotary stage. The first part 
was not achieved do to some dependencies issues concerning the availability of mosquitoes. 
Our second part was achieved via a report on the design of a rotary stage to replace the linear 
stage currently in use. The original design report was adapted and is included here in Section II 
subsection C. Design Concept of Rotary Stage. The final design provided in this section along 
with the report on the design is what we see as half of our ideal deliverable.  
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Our maximum deliverable was not achieved. The first part of this two part deliverable was to 
expand on out ideal by including gland collection and test with 100+ mosquitoes. This was not 
achieved for several reasons; several weeks without sacrificed mosquitoes, mechanical 
alignment and precision problems, and a change in gland collection method. We noted in our 
dependencies that mosquito procurement could pose a risk to meeting our deliverables (see 
Figure 26), and we did see some weeks without mosquitoes to perform tests due to  unforeseen 
production issues. This lead to several delays in testing of mechanical systems that made it 
difficult to review and iterate the design to a level where testing could be done of the mechanical 
systems in a meaningful way. We also underestimated the delays we might encounter due to 
mechanical design challenges such as tolerancing and stability. The combination of these two 
issues led to delays in earlier deliverables on which these maximum deliverables depended. 
Gland collection also was not integrated. This is primarily due to the current project uncertainty 
in the best way to move forward with this portion of the design. At the start of the semester, the 
project team was focused on a well-defined method for gland collection, but throughout the 
semester it has become evident from other tests that we may need to design a new process. As 
such, this task is less of an implementation task and more of a partnered research task between 
the teams at Hopkins and Sanaria, which will result in a longer timeline than just implementing 
an existing, known method. Finally, given the continued design changes in components on all 
levels in the project, we chose to delay moving forward on building the rotary stage until the rate 
of design changes of adjacent parts stagnates after their effectiveness has been demonstrated 
with the linear dissection system.  

VI. Dependencies  
Overall, we did a good job assessing the dependencies at the start of this project. We identified 
mosquito procurement as a critical dependency, and despite some issues, we were able to 
make progress in the weeks without samples. The only major surprise was the change in a long 
standing assumption of a stable method for gland collection. We originally planned to suction off 
and collect all of the mosquito exudate, but now, due to purity concerns, a second 
microdissection step may be required. Additionally, we were not initially aware that mosquitoes 
had salivary glands that were of similar texture to what was to be anticipated during the 
production process for only 4 hours after sacrifice. As such, we have now set up a way to 
procure mosquitoes for testing the day of so we can best test under relevant conditions. 
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Figure 26. Table outlining out project dependencies for this project. 

VII. Future Work 
Over the past month, we have made it a priority to document and communicate design 
decisions so that this project can easily be transferred to other students and continued. We will 
personally assist with the transfer for the month after the semester ends, but will not be 
continuing on the project in the future due to graduating or transferring to dissertation work. The 
next steps for this project include the following. We will be conducting formal testing of the 
dissection system and robot system in the coming weeks, and then a formal test including the 
vision system(s) should be conducted. Additionally, the rotary stage designed in this project will 
be manufactured, tested, and iterated as necessary. At this point, it would be valuable to begin 
efforts to integrate the robot system with the upstage feeding system. To fully automate an 
end-to-end system would require some consideration to software architecture that may allow for 
something like a real-time operating system to manage many threads that command each 
electromechanical system in the assembly.  

 
 
 

  

Confidential         41 



 

References  
[1] World Health Organization, “World malaria report 2018,” Nov 2018. [Online]. Available: 
https://www:who:int/malaria/publications/worldmalaria-report-2018/report/en/ 
[2] M. P. Heron, “Deaths: Leading causes for 2016,” 2018. 
[3] World Health Organization, Global technical strategy for malaria 2016-2030, 2015. 
[4] S. L. Hoffman, P. F. Billingsley, E. James, A. Richman, M. Loyevsky, T. Li, S. Chakravarty, 
A. Gunasekera, R. Chattopadhyay, M. Li, et al., “Development of a metabolically active, 
non-replicating sporozoite vaccine to prevent plasmodium falciparum malaria,” Human vaccines, 
vol. 6, no. 1, pp. 97–106, 2010. 
[5] A. S. Ishizuka, K. E. Lyke, A. DeZure, A. A. Berry, T. L. Richie, F. H. Mendoza, M. E. Enama, 
I. J. Gordon, L.-J. Chang, U. N. Sarwar, et al., “Protection against malaria at 1 year and immune 
correlates following PfSPZ vaccination,” Nature medicine, vol. 22, no. 6, p. 614, 2016. 
[6] J. E. Epstein, K. M. Paolino, T. L. Richie, M. Sedegah, A. Singer, A. J. Ruben, S. 
Chakravarty, A. Stafford, R. C. Ruck, A. G. Eappen, et al., “Protection against plasmodium 
falciparum malaria by PfSPZ vaccine,” JCI insight, vol. 2, no. 1, 2017. 
[7] M. S. Sissoko, S. A. Healy, A. Katile, F. Omaswa, I. Zaidi, E. E. Gabriel, B. Kamate, Y. 
Samake, M. A. Guindo, A. Dolo, et al., “Safety and efficacy of pfspz vaccine against 
plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in mali: 
a randomised, double-blind phase 1 trial,” The Lancet infectious diseases, vol. 17, no. 5, pp. 
498–509, 2017. 
[8] K. E. Lyke, A. S. Ishizuka, A. A. Berry, S. Chakravarty, A. DeZure, M. E. Enama, E. R. 
James, P. F. Billingsley, A. Gunasekera, A. Manoj, et al., “Attenuated pfspz vaccine induces 
strain-transcending t cells and durable protection against heterologous controlled human 
malaria infection,” Proceedings of the National Academy of Sciences, vol. 114, no. 10, pp. 
2711–2716, 2017. 
[9] B. Mordm¨uller, G. Surat, H. Lagler, S. Chakravarty, A. S. Ishizuka, A. Lalremruata, M. 
Gmeiner, J. J. Campo, M. Esen, A. J. Ruben, et al., “Sterile protection against human malaria by 
chemoattenuated pfspz vaccine,” Nature, vol. 542, no. 7642, p. 445, 2017. 
[10] T. Bousema and C. Drakeley, “Epidemiology and infectivity of plasmodium falciparum and 
plasmodium vivax gametocytes in relation to malaria control and elimination,” Clinical 
microbiology reviews, vol. 24, no. 2, pp. 377–410, 2011. 
[11] Sanaria Inc. (2014) SporoBot - Build a Robot. Fight Malaria. Save Lives! [Online]. Available: 
https://www:youtube:com/watch?v=VblazNXcHFg 
[12] I. Lapowsky, “The next big thing you missed: This mosquitodissecting, malaria-killing robot 
needs your help,” Jun 2014. [Online]. Available: 
https://www:wired:com/2014/06/the-next-big-thing-youmissed-a-crowdfunded-mosquito-dissecti
ng-malaria-killing-robot/ 
[13] C. Borchers, “Robot may help fight malaria,” May 2014. [Online]. Available: 
https://www:bostonglobe:com/business/2014/05/07/mosquito-harvest/Qxto58qtpGHhRVfliT6aHI
/story:html 

Confidential         42 



 

[14] R. H. Taylor, A. Canezin, M. Schrum, lulian Iordachita, G. Chirikjian, M. Laskowski, S. 
Chakravarty, and S. Hoffman, “Mosquito salivary gland extraction device and methods of use,” 
U.S. Patent Application US20 170 355 951A1, June 13, 2016. 
[15] M. Schrum, A. Canezin, S. Chakravarty, M. Laskowski, S. Comert, Y. Sevimli, G. S. 
Chirikjian, S. L. Hoffman, and R. H. Taylor, “An efficient production process for extracting 
salivary glands from mosquitoes,” arXiv:1903.02532, 2019. 
[16] H. Phalen, P. Vagdargi, M. Pozin, G. S. Chirikjian, I. Iordachita, and R. H. Taylor, “Mosquito 
pick-and-place: Automating a key step in PfSPZ-based malaria vaccine production,” Submitted 
to the 2019 15th IEEE International Conference on Automation Science and Engineering (CASE 
2019). 
 
  

Confidential         43 



 

Appendix A. Function Documentation 

Table 1: RobotMove Package 
Note: most functions will provide a boolean flag output indicating successful completion of the 
tasks, for simplicity and readability, these outputs are not included in the table below. Axes are 
referenced throughout as A,B,C,D as Galil references them this way. In the current setup those 
axes respectively have positive directions to the Left (A), Backwards (B), Down (C), and 
Clockwise (D) movements. 
 

Function 
Name 

Performed Task Inputs Outputs 

begin_communica
tion_galil 

Initializes communication with the 
Galil controller. If no input, uses 
the defaulted address of 192.168.1.1 

optional: 
Ip_address='192.168.1.1' 
A string of Galil’s ip 
address for ethernet 
communication 

None 

begin_communica
tion_arduino 

This initializes serial communication 
with an Arduino microcontroller. After 
connection a string is also sent that 
puts the Arduino into a ‘connected’ 
mode which turns the servo motor on 
and opens the gripper. 

None Galil controller 
class object ‘g’ 
used by package to 
address commands 
to the controller  

set_defaults Sets default controller gains, speed, 
acceleration for Galil controller by 
calling respective functions without 
optional input. 

None None 

close_communica
tion 

This closes communication with the 
Galil controller. As an added 
convenience feature, before shutdown 
the current encoder values are written 
to a file, allowing recover without 
homing if the power goes out and the 
incremental encoders lose their 
positions 

None None 

set_controller_
gains 

Inputs (kp, ki, kd) are tuples or 
lists of length 4, corresponding to 
the  proportional, integrator, and 
derivative constants for axes 
(A,B,C,D) respectively.  If you do not 
wish to change a gain use None as the 
list element 

optional: 
kp=(6, 6, 6, 6) 
ki=(0, 0, 0, 0) 
kd=(64, 64, 64, 64) 
PID motor control gains 
for each axis, if left 
out the default ones 
shown are used 

None 

get_controller_
gains 

Query robot controller for axis PID 
gains and print to screen 

None kp, ki, kd: lists 
for length 4 
corresponding to 
[A,B,C,D] axes 
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set_speed Input axis_speeds is tuple or list of 
length 4, corresponding to the  speed 
in encoder counts/sec for each axis 
[A,B,C,D]. If you do not wish to 
change a speed use None as the list 
element 

axis_speeds=(25000, 
25000, 25000, 25000) 
Speed in encoder counts 
per second. One count is 
approximately 0.5 
micron. 

None 

get_speed Queries Galil controller for current 
speed settings  

None speed [A,B,C,D] 
List of length 4, 
each element 
representing speed 
associated with 
one axis in 
encoder counts 

set_acceleratio
n 

Input axis_speeds is tuple or list of 
length 4, corresponding to the  speed 
in encoder counts/sec for each axis 
[A,B,C,D]. If you do not wish to 
change an acceleration use None as the 
list element 

axis_accels=(256000, 
256000, 256000, 256000) 

None 

get_acceleratio
n 

Queries Galil controller for current 
acceleration settings  

None accel [A,B,C,D] 
List of length 4, 
each element 
representing 
acceleration 
associated with 
one axis in 
encoder counts / 
sec^2 

move_relative Instruct the robot to move with some 
number of encoder counts from current 
position. If latch is set, function 
will only return when movement is 
completed and will check if the final 
position was reached as commanded. If 
you do not wish to move an axis use 0 
as the list element. NOTE: Rotations 
can not be commanded with this 
package. Use Galiltools (or edit) if 
needed 

counts_to_move:  
tuple or list of length 
4, corresponding to the 
number of encoder counts 
to move for each axis 
[A,B,C,D] 
 
Optional: 
latch=True: 
If true, function will 
not return until motion 
is complete 

None 

move_absolute Instruct the robot to move to a 
specific position with tuple or list 
of length 4, corresponding to the 
location in encoder counts to move to 
for each axis [A,B,C,D]. If latch is 
set, function will only return when 
movement is completed and will check 
if the final position was reached as 
commanded. If you do not wish to move 
an axis use None as the list element. 
NOTE: Rotations can not be commanded 
with this package. Use Galiltools (or 
edit) if needed 

goal: 
tuple or list of length 
4, corresponding to the 
position in encoder 
counts where each axis 
should move to [A,B,C,D] 
 
Optional: 
latch=True 
If True, function will 
not return until motion 
is complete 
 

None 

wait_until_stop When called, this function will not 
return until it has queried the Galil 
controller and been told that the 
specified axes have stopped moving.  
The default waits on all axes 

Optional: 
axes="ABCD" 
string of non-separated 
axis names. e.g. "ABCD", 
"BC", etc. 

none 
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get_position Queries Galil controller for current 
position of the robot  

none position 
[A,B,C,D] 
List of length 4, 
each element 
representing 
current position 
associated with 
each axis in 
encoder counts 
 
 

get_velocity Queries Galil controller for velocity 
of each axis of the robot  

none velocity 
[A,B,C,D] 
List of length 4, 
each element 
representing 
current velocity 
associated with 
each axis in 
encoder counts / 
sec 

open_gripper Send the arduino a serial command to 
move the servo and open the gripper 

none none 

close_gripper Send the arduino a serial command to 
move the servo and close the gripper 

none none 

get_gripper_sta
te 

Tells what state the program believes 
the gripper to be in (i.e. what was 
the most recent instruction 

none gripper_state 
Integer ‘boolean’, 
1 for open, 0 for 
closed 

home_axis Starts a homing routine on specified 
axis. Will move the specified axes in 
the negative direction until the limit 
switch, advance forward to an encoder 
pulse, and set that position as 0.  

axis 
String to specify axes 
with its character name 
as a string (e.g. "B", 
"C" or "D") 

none 

set_position Input new position values for current 
position with. If you do not wish to 
change the value of an axis, set list 
element to None. 

Positions 
Tuple or list of length 
4 that defines position 
for each axis [A,B,C,D]. 
Each element integers or 
None 

none 

read_allowed_vo
lumes 

Read the allowed volumes from local 
file (typically used during init). If 
no file found, initialize allowed 
volumes list as empty. 

filename 
String containing 
address to file where 
allowed volumes are 
stored on the local 
computer 

allowed_volumes 
Numpy array 
containing all 
allowed volumes 
that were stored 
in the file (or an 
empty array if no 
file) 

add_allowed_vol
ume 

Add an allowed volume in which the 
robot is allowed to be commanded. This 
is defined through the two extreme 
corners of a rectangular prism in the 
robot’s workspace. For now, rotation 
is not considered as it is disallowed 
in this package. These values will be 
added to the class variable that keeps 

low_bound, high_bound 
Lists of length 3 
comprised of integers. 
Values given as [x,y,z], 
corresponding to the 
values of points at the 
corner of a 3D volume in 
which the robot is 

none 
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track of allowed volumes for checks 
before move commands, as well as to 
the file cataloging allowed volumes so 
that it will remain in the future. 

allowed to move. The 
values correspond to the 
x,y,z (or a,b,c) axes 
respectively. The values 
of all elements in 
low_bound must be 
strictly less than those 
in high_bound. All 
values are in encoder 
counts of the robot. 
  

remove_allowed_
volume 

Removes one or more allowed volumes 
for the system, both in the local 
class variables and in the file from 
which allowed volumes are read in at 
startup. List the volume indices in a 
list [i,j,k]. Try using 
'list_allowed_volumes' to see which 
ones to remove. Set clear_all flag to 
true to completely reset volumes. 

remove_indices 
List containing integers 
corresponding to the 
indices of the allowed 
volume you want to 
remove 
 
Optional: 
clear_all=False 
Setting this flag will 
remove all volumes, 
regardless of the 
indices supplied 

none 

list_allowed_vo
lumes 

Prints a viewing-friendly list of all 
allowed volumes to the screen. Can be 
used along with 
'remove_allowed_volume' to find 
candidate volumes for removal 

none Prints a 
user-friendly list 
of allowed volumes 
with associated 
index number 

check_if_allowe
d 

Input is a commanded for cartesian 
motion (rotational moves not allowed 
currently), check to see if that 
position would like in an allowed 
region. If so, return, else quit. 

command 
position list of 
integers of length 3 in 
[x,y,z] (or [A,B,C]) 
coordinates 

none 

save_encoder_va
ls 

Saves current encoder values to file. 
When run at shutdown prevents 
re-homing in event of controller 
losing power 

none Writes current 
encoder values to 
a file on the 
local computer 

read_encoder_va
ls_last_communi
cation_end 

Reads encoder values from data file 
saved to with save_encoder_vals 

none last_position 
List of length 4 
corresponding to 
encoder counts for 
[A,B,C,D] axes 

reset_encoders_
from_file 

Resets encoder values from the file 
saved in save_encoder_values. To be 
used in event of controller loss of 
power 

none none 

gal_out_to_list Helper function: Converts output 
string for Galil controller to Python 
list 

galil_output 
String from controller 

list_output 
List of integers 

list_to_galil_i
nput 

Helper function: Turn list into galil 
controller-friendly input 

galil_command_str 
String indicating Galil 
command list_input 
List of integers 
 

galil_input 
String for 
controller 
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Table 2: DissectorMove Package 
Note: most functions will provide a boolean flag output indicating successful completion of the 
tasks, for simplicity and readability, these outputs are not included in the table below 
 

Function Name Performed Task Inputs Outputs 

begin_communicati
on_arduino 

This initializes serial communication 
with an Arduino microcontroller. If the 
Arduino has not been hard reset (e.g. 
power off, disconnected from computer, 
new command flashed), then the current 
slot should be read in,preventing the 
stage from needing to be re-homed 

Optional: 
port='/dev/ttyACM1' 
Specify the port the 
Arduino is on. 

none 

move_to_home Sends serial command to have the linear 
stage home itself and advance to the 
first active slot , optional 
(defaulted) latch to keep function from 
returning until action is complete 

Optional: 
latch=1 
When set does not 
return until Arduino is 
finished action 

none 

move_forward_one_
slot 

Sends serial command to move one slot 
forward, optional (defaulted) latch to 
keep function from returning until 
action is complete 

Optional: 
latch=1 
When set does not 
return until Arduino is 
finished action 

none 
 

move_backward_one
_slot 

Sends serial command to move one slot 
in reverse, optional (defaulted) latch 
to keep function from returning until 
action is complete 

Optional: 
latch=1 
When set does not 
return until Arduino is 
finished action 

none 

move_to_slot Move to a specific slot number - 
automatically latched so that it can do 
these in sequence 

target_slot 
Integer specifying 
cartridge slot to move 
to 

none 

actuate_cutter Sends serial command to activate 
cutter, optional (defaulted) latch to 
keep function from returning 
 until action is complete 

Optional: 
latch=1 
When set does not 
return until Arduino is 
finished action 

none 

actuate_press Sends serial command to activate press, 
optional (defaulted) latch to keep 
function from returning until action is 
complete 

Optional: 
latch=1 
When set does not 
return until Arduino is 
finished action 

none 

close_communicati
on 

Closes communication to the Arduino 
which powers down the servo motors, 
stopping chattering. Also allows the 
Arduino to temporarily save slot value 
in memory, so that if you reconnect 

none none 
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without a hard reset on power, you do 
not have to re-home the stage 

__wait_until_comp
lete 

Delays function progress until Arduino 
is finished, optional return of printed 
line 

none output 
The string sent 
by the Arduino 

 

Table 3: Important Files and Scripts 
 

Name Relevant Contents / Tasks 

utilities/image_coord_cursor_ov
erhead.py 

When called, will pull current image from ROS topic on which overhead 
camera image is streamed. User clicks anywhere on this image and the 
pixel value is provided. This allows for the user to take the place of 
the computer vision system for unit testing 

utilities/bernstein_polynomial.
py 

Written by previous students who worked on project. We treat as a 
“black box” mostly. We did confirm that it is implementing Bernstein 
polynomial fitting correctly. We made some improvements, such as 
converting data type to numpy arrays and improving coefficient storage. 
get_est is an important function to go from camera to robot coordinates 
get_bern_cof takes calibration results and generates the Bernstein 
coefficients 

utilities/gclib.py  Existing python library for Galil controller communication that 
RobotMove wraps 

utilities/keypoint_vision.py Contains functions written primarily by Hongtao Wu to implement a 
neural network that identifies key points on mosquito anatomy 

utilities/Centroid_subscriber.p
y 
utilities/dl_inference.m 
utilities/dl_subscriber.py 

Several functions written by Prasad Vagdargi to implement neural 
network to do identification of mosquito in image and segment parts 

arduino_code/arduino_for_protot
ype.ino 

The code that is flashed to the Arduino for the dissector system  

arduino_code/servo_gripper.ino The code that is flashed to the Arduino for the gripper 

cv_camera/scripts/rospub.py Streams images to rostopic from overhead camera 

cv_camera/scripts/autodetector.
py 

Streams images to rostopic from overhead camera AND automatically 
detects a mosquito in the image and publishes its centroid location 

cv_camera/scripts/rospub_for_ca
l.py 

Streams images to rostopic from overhead camera, but has a high 
exposure time, washing out potential false positives in calibration 
images 

evaluate_calibration.py Shows graph of actual location of robot during calibration and 
predicted locations using the Bernstein polynomial fitting. Supplies 
statistics of this fitting to those calibration points 

jog_dissector.py Quick code to run functions in DissectorMove package 
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jog_robot.py Quick code to run functions in MoveRobot package, especially to move the 
robot around or open/close the gripper 

manage_allowed_volumes.py Quick code to manage the allowed volumes in the RobotMove package. Easy 
to add, remove, etc. from here 

move_by_click.py Image is displayed to the screen, user clicks on it and the robot moves 
there. Good for quickly moving the robot somewhere or qualitatively 
checking calibration 

move_mosquito_CASE2019.py The automatic mosquito pick-and-place algorithm used for the experiments 
which were submitted to CASE 2019. This used the segmentation neural 
network. The sAMMS was used mechanically. 

move_mosquito_auto_keypoint.py Automatic mosquito pick-and-place algorithm using keypoint detection 
neural network.  The sAMMS was used mechanically. 

move_mosquito_integrated.py Either autonomous or semi-autonomous mosquito pick-and-place algorithm 
(using keypoint computer vision or user clicks). The linear dissection 
system was integrated and is controlled by this code. 

recal_from_file.py Recomputes Bernstein coefficients from data files collected during 
calibration. Useful if you had an old calibration saved and wanted to 
reuse or there was some error 

run_calibration.py Move robot to starting position and specify how far you want the robot 
to move in each direction and the grid density. Then run the function. 
Uses a computer vision method to find the tooltip in each image. 

sanaria_perform_homing.py Performs homing using RobotMove package, but should move the robot to 
appropriate locations after each sequential move to prevent collision. 
NOTE: will need to be edited for changes to robot workspace. It may be 
useful to perform this line by line and get the robot in the correct 
starting position for each axis homing. See the relevant section of this 
report. 
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Appendix B. CASE 2019 Manuscript 
This manuscript was developed by members of our group based on work done during this 
project. It is attached below as a reference for more detail on items discussed in the main body 
of this report. 
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Mosquito Pick-and-Place: Automating a Key Step in PfSPZ-based
Malaria Vaccine Production

Henry Phalen, Prasad Vagdargi, Michael Pozin, Sumana Chakravarty, Gregory S. Chirikjian, Fellow, IEEE,
Iulian Iordachita, Senior Member, IEEE and Russell H. Taylor, Life Fellow, IEEE

Abstract— The treatment of malaria is a global health chal-
lenge that stands to benefit from the widespread introduction
of a vaccine for the disease. A method has been developed to
create a live organism vaccine using the sporozoites (SPZ) of the
parasite Plasmodium falciparum (Pf), which are concentrated
in the salivary glands of infected mosquitoes. Current manual
dissection methods to obtain these PfSPZ are not optimally
efficient for large-scale vaccine production. We demonstrate the
automation of a key step in this production process, the picking
and placing of mosquitoes from a staging apparatus into a
dissection assembly. This unit test of a robotic mosquito pick-
and-place system is performed using a custom-designed micro-
gripper attached to a four degree of freedom (4-DOF) robot
under the guidance of a computer vision system. Mosquitoes
are autonomously grasped from a mesh platform and pulled
to a pair of notched dissection blades to remove the head of
the mosquito, allowing access to the salivary glands. Placement
into these blades is adapted based on output from computer
vision to accommodate for the unique anatomy and orientation
of each grasped mosquito. In this pilot test of the system on
50 mosquitoes, we demonstrate a 100% grasping accuracy and
a 90% accuracy in placing the mosquito with its neck within
the blade notches such that its head can be removed. This
is a promising result for this difficult and non-standard pick-
and-place task. Analysis of the failure cases provides insights
for improvements to be implemented as we integrate this
robotic pick-and-place system into a larger automated mosquito
dissection system under development.

I. INTRODUCTION

Malaria presents a tremendous public health burden. The
World Health Organization estimates 219 million individuals
worldwide were infected with the disease in 2017 and ranked
it among the top 20 leading causes of death among both
adults and infants in 2016 [1], [2]. With increasing drug
and insecticide resistance, it has become ever more difficult
for current treatments to maintain efficacy in reducing the
prevalence of malaria worldwide [3]. Development of malar-
ial vaccines present a promising way forward in the global
effort for malaria eradication [3]. Progress has been made
in the development of the Sanaria Plasmodium falciparum
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sporozoite-based vaccine (Sanaria R© PfSPZ Vaccine), an ef-
fective vaccine manufactured from PfSPZ extracted from
the salivary glands of female Anopheles mosquitoes [4]–[9].
Such a vaccine may reduce the burden of the disease by
providing immunity against Pf, the most common malarial
parasite, which was estimated to account for greater than
95% of deaths caused by malaria in 2017 [1], [10].

The process of vaccine production requires salivary gland
dissection and to date has only been demonstrated with
training-intensive manual or semi-automated processes, pre-
senting a major bottleneck in the scalability of this vaccine.
In traditional manual methods, technicians are presented with
freshly-sacrificed mosquitoes and process them one at a
time, removing the mosquito’s head with a needle under
microscope and squeezing out a volume of exudate that
includes the PfSPZ-laden salivary glands. The exudate from
mosquitoes is collected and processed for the isolation of
PfSPZ.

The automation of salivary gland harvesting from in vivo
mosquitoes has been attempted in the past [11]–[13]. How-
ever, no literature supports the success of any such process
at this time. A semi-automated mosquito micro-dissection
system (sAMMS) has been developed and investigated within
our research group [14], [15]. In the sAMMS process, a
human technician uses micro-forceps to sort mosquitoes into
cartridges such that their necks extend between cutter blades.
Then, the blades are actuated to cut off all the heads, and a
comb-like squeezing device is used to extrude all the exudate,
which is collected via a suction device. Early experience has
shown that this device roughly doubles the throughput of
purely manual dissection and reduces training time to reach
peak performance from 39 to 1.5 weeks [15].

While a demonstrable improvement over manual methods,
the sAMMS device was developed only as a first step towards
a fully automated dissection system to enable large-scale
production of enough vaccine for world-wide vaccination
efforts. One major bottleneck in the transition to a fully
automated system is the visual perception and physical
precision it takes to recognize a mosquito, analyze it, and
best align it so that the head can be removed. We report our
work to overcome these challenges through the development
of a vision-guided pick-and-place robotic system for loading
mosquitoes into the sAAMS device. As our research group
works toward development of a fully automated mosquito
salivary gland dissection system, the demonstration of a
robust pick-and-place apparatus is a key milestone in real-
ization of that goal.
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II. SYSTEM DESIGN CONCEPT

A. System Overview

The robotic pick-and-place system described in this pa-
per will function as a subsystem within a fully-automated
mosquito dissection system. This larger system will ulti-
mately take freshly-sacrificed mosquitoes suspended in wa-
ter and output a collection of mosquito exudate including
PfSPZ-laden salivary glands. Our concept of this dissection
system is provided in Fig. 1. We briefly describe this
system to clarify the context of the robotic pick-and-place
subsystem, which will be the middle of three primary system
components.

First, a staging apparatus will separate mosquitoes and
present them one at a time to the robot. Freshly-sacrificed
mosquitoes sit in a basin of solution beneath the system. A
spinning rotor in the basin creates a vortex that will carry
mosquitoes in solution to the top of a separation cone. This
cone has channels in one sector down which water will flow
onto a ring of orientable mesh-bottomed cups. This ring will
rotationally index around the cone so that, by controlling the
vortex speed and concentration of mosquitoes in the basin,
the cups will on average have one mosquito on them once
they pass beyond the sector of the cone with channels. At
an index beyond the channel, a camera will image a single
cup and a computer vision algorithm will determine if a
mosquito is present. If so, at the next indexed position,
the cup will be rotated to orient the mosquito so that the
mosqutio’s proboscis will point radially outward from the
ring. Finally, the ring will be rotated to an index that a
sits parallel to a linear stage that will comprise the third
subsystem, a dissection assembly line. The development of
the staging apparatus is described in detail in [16].

The pick-and-place robot will be positioned on the other
side of the linear stage and will reach over to the cup,
grasp the mosquito by its proboscis and drag it onto a
sAMMS-resembling cartridge attached to a linear stage.
Similar to how a human technician would use the sAMMS,
the robot will drag the mosquito into a slot and place the
mosquito’s neck into notches cut in two parallel dissection
blades. An overhead camera will be used to provide computer
vision feedback of this process. The blades will be actuated,
cutting the head. After disposing of the mosquito’s head,
the robot will return to the ring which will have rotated
to present a new mosquito. The linear stage will index
laterally immediately after the mosquito is cut. As additional
mosquitoes bodies are positioned on the cartridge, the linear
stage will translate and expose mosquitoes to several stations
at which the exudate can be squeezed out and salivary glands
collected. Work on the dissection assembly line is currently
ongoing within our research group.

B. Requirements

We focus here on the robotic pick-and-place system, along
with its difficult and important task of picking up mosquitoes
presented on a mesh surface, and precisely placing them so
that only the neck lies within the blades. In order to extract

Fig. 1. Concept image for automated mosquito dissection system.

the salivary glands of the mosquito, the dissection point has
to be precisely at the intersection of the head and thorax. If
the mosquito is not placed far enough into the blade, the cut
will occur on the head, leaving no passage for the exudate
to be squeezed out, effectively wasting the mosquito and
PfSPZ living within. Because the salivary glands are located
just behind the mosquito’s head, placing the mosquito too far
into the blade would result in some of the gland being lost
in the cut, also decreasing PfSPZ yield. The mosquito neck
is approximately 0.3 mm in length, and the blades each have
a thickness of 0.002 inches (0.051 mm), leaving only about
200 micrometers for error. Moreover, grasping must occur
only on the proboscis to prevent any damage to the body
that might ruin the salivary glands or create an alternative
opening for exudate to squeeze out of. The proboscis is on
average 2.0 mm long, with a diameter of approximately 0.1
mm.

In addition to size challenges, this procedure presents
multiple difficulties not typically faced in a standard pick-
and-place procedure. One of the main challenges is the
mosquito-to-mosquito variation. Some of this is anatomical
in origin. Each mosquito varies somewhat in size and is
not axis-symmetric, meaning the alignment of the neck
relative to the body depends on which side the mosquito
body lies on. Further, mosquitoes are very flexible. By
grabbing and pulling the mosquito from the proboscis, the
body tends to straighten out in time for placement, but
first, the mosquito has to be identified and grasped from
all variety of twisted, compressed, or otherwise contorted
orientations. While upstream processes are expected to align
the mosquito’s proboscis within 15 degrees of an ideal
orientation for the robot to grab it, the mosquito can still
be located anywhere on the cup and must be grasped
accordingly. Because of its length, the proboscis can still be
grabbed even if there is some error in the robot positioning,
or computer vision targeting. However, this, combined with
the general variability in proboscis lengths, means that the
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offset between the robot’s grasp point and the mosquito’s
neck is not consistent trial-to-trial. As such, these challenges
necessitate adaptive automation. It is not enough to program
a sequence of movements, but rather for each mosquito, the
robot must move to a unique location, grasp, and then the
determine exactly where to move for placement based on
visualization of the mosquito’s anatomy and the grasping
location.

C. Experimental Setup

The robot used in this procedure is a 4-DOF, linear stage
robot by New England Affiliated Technologies, Lawrence,
MA (Fig. 2). A dual-axis X-Y table is used as the base
for the robot, onto which a Z axis is mounted orthogonally
(NEAT: XYR-6060 and NEAT: LM-400 respectively). The
robot also has a rotary axis which is not used in this study.
Each axis is driven by a 12V DC servo motor, with a
leadscrew, has a travel of 100 mm, and is coupled with an
incremental encoder. The positioning resolution of these axes
was measured with a dial indicator to be approximately 10
micrometers. The entire assembly is mounted to an optical
table. Robot motion is driven by a Galil controller (DMC-
4143), interfaced to a Linux computer by ethernet connec-
tion. Attached to the robot is a custom-designed micro-
gripper mechanism visualized in Fig. 3. A cam mechanism
attached to a HexTronik HXT900 servo motor drives the rail
of a linear guide within its carriage, causing the tooltip to
open and close. The tooltip of the micro-gripper is adapted
from an Alcon Grieshaber retinal surgical forceps. Movement
of the linear guide rail extends or retracts a sleeve over a
normally-open gripper jaws. The micro-gripper is controlled
by sending position commands to the servo motor via USB
serial communication from the computer to an Arduino Uno
microprocessor.

Fig. 2. Experimental Setup. A close-up image of dissection blades and
cartridge is inset.

Mosquitoes are staged for dissection on a modified
sAMMS device that is also mounted to an optical table. The
sAMMS cartridge is modified to have a hole 23 mm away
from the blades in which is placed a 20 mm diameter cup
that matches the one used in the upstream staging apparatus.
This cup is covered with a nylon 750 micrometer mesh that

Fig. 3. Custom-designed micro-gripper used to grasp mosquitoes.

is used for water drainage in that apparatus. The mosquito
is dragged into a slot in the sAMMS cartridge and placed
into the sAMMS blades. These are two 0.002 inches (0.051
mm) thick stainless steel blades with 0.5 mm wide by 1.0
mm deep notches cut in them to match the midpoint of the
slots. The closest blade to the cartridge is stationary while the
further blade can be manually actuated by pressing a button
on the side of the device. This action causes the mosquito
neck to be caught between the two blades and cut.

The setup also includes three cameras (Fig. 2). An over-
head microscopic camera (OptixCam Summit D3K2-5) with
an Omano OM-10K zoom lens is used to capture a complete
view of the workspace and is used by the computer vision
to identify a mosquito’s presence and general location.
A second camera (Plugable USB Microscope Camera), is
mounted on the robot and is used to identify the location of
the mosquito’s body parts for accurate picking and placing.
We refer to these as the overhead and onboard cameras re-
spectively. A third camera (Opti-Tekscope USB Microscope
Camera) is placed to the side and rear of the setup so that
it’s visual field is in line with the blades. This camera is not
necessary for system operation and is only used to visualize
placement so the tester can determine if a trial was successful
or not.

The automated procedure uses the overhead and onboard
cameras to guide the robot’s motion. The procedure consists
of three stages. In the first stage, an image of the entire
workspace is captured using the overhead camera. This
image is converted to HSV space, and the mosquito is
segmented out. Next, a bounding box is fit to this region
and a weighted centroid is calculated for the mosquito, as
shown in Fig. 4(a). Using the calibration method described
in Section II D, the tooltip is moved to mosquito. At this
position, the onboard camera is able to capture a much more
zoomed in image with more features and details.

In the second stage, the onboard camera captures a detailed
image of the mosquito and identifies the proboscis in the
image shown in Fig. 4(b). The centroid of the proboscis
is used as the grasp location for the mosquito. Using the
calibration procedure in Section II D, the tooltip is moved
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Fig. 4. Side view of robot path and related representative images captured by the vision system. (a) Image captured from overhead camera showing
bounding box of detected mosquito. (b) Image captured from onboard camera to determine proboscis centroid. (c) Image captured from onboard camera
before grasping. (d) Image captured from onboard camera immediately after grasping. (e) Image of the mosquito taken used to calculate head-to-tooltip
offset. (f) Image after aligning the mosquito neck with the blades.

to the grasp location 4(c) and the mosquito is grasped by its
proboscis 4(d). Finally, the robot drags the mosquito to an
empty slot on the cartridge near the blades.

In the third stage, the onboard camera captures a final
image shown in Fig. 4(e) with the tooltip in view to detect
the mosqutio head-to-tooltip offset. The robot uses this offset
value to position the mosquito with its neck between the
dissection blades (Fig. 4(f)). Our group is also investigating
the use of a second computer vision processing algorithm
[17], which was not used in this study.

D. Calibration
To relate the robot and camera coordinate systems, we use

a two stage calibration process. In the first stage, the tooltip
of the micro-gripper is located in the overhead camera frame.
The tool is segmented from the background in HSV space
using Otsu’s binarization [18], and contour identification is
used to detect the tool. The lowest point of the tool contour
is then used as the tooltip. In the second stage of calibration,
the robot is moved through the camera space across a grid of
points. The tooltip is detected and recorded at each position.
The resulting grid of points from both coordinate systems
are used as the inputs for a Bernstein polynomial fitting
routine as performed in [19]. This routine fits two fourth
degree polynomials, which creates a bijective map from the
camera coordinates to the robot’s encoder coordinates. Such
a polynomial fitting method also compensates for radial and
aspherical lens distortions.

The tooltip does not move with respect to the overhead
camera, so the polynomial fitting method described above
could not be used to calibrate this camera. Instead, a pre-
calibrated grid of a resolution 5mm x 5mm was placed in the
background. The robot was then moved by a known distance
along each axis, and images were captured before and after
motion. The pixel motion of the grid was calibrated to the
corresponding change in robot encoder counts.

The location of the cartridge and blades in robot coordi-
nates were determined using a shim. The robot was slowly
advanced until the robot held the shim firmly to the surface
of interest and encoder counts at this location were used as
a reference.

III. EXPERIMENTAL METHODS

A. Study Design

Testing was performed to investigate the efficacy of the
designed system to pick up a mosquito and place that
mosquito within blades that can remove the insect’s head.
The process was performed on 50 non-infected Anopheles
mosquitoes. Prior to testing, the mosquitoes were kept in an
airtight, refrigerated container of phosphate-buffered saline
solution (PBS) following sacrifice one day prior. Functioning
as a unit test for this subsystem within the eventual auto-
mated mosquito dissection system, only the grasping and
subsequent positioning of the mosquitoes by the robot were
considered for trial success or failure. All actions of the
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system during the test were performed autonomously with
feedback from computer vision.

B. Pick Procedure

The experimental procedure is demonstrated in Fig. 4. A
mosquito is removed from the PBS solution by its proboscis
with tweezers and placed anywhere on a circular mesh cup
of radius 10 mm with its center placed 23 mm away from
the blades as measured on the central axis of the cartridge
slot. The mosquito was placed so that the proboscis was
positioned forward toward the blades, pointing within 15
degrees this line. One such placement is shown in Fig. 4(a).
These conditions were chosen to mimic those expected from
the upstream mosquito-staging apparatus that this process
will later be integrated with. To further match the expected
results of this upstream process, no further attempt at stan-
dardization of mosquito starting position were made (e.g.
what side the mosquito was lying on, relative straightness of
legs). The micro-gripper tooltip begins the trial at a location
away from the cup and 3.5 mm above the cartridge surface.

A bounding box around the mosquito is identified by
computer vision in an image from the overhead camera, and
the robot moves to a point 5.0 mm in front of the centroid
of that region (Fig. 4(b)). This brings the mosquito into view
of the onboard camera without placing the gripper over top
of the mosquito body. By lowering 3.0 mm toward the mesh
surface, the mosquito is brought into focus. The centroid of
the proboscis region is identified and the robot moves the
gripper to a location 2.0 mm above this this point (Fig 4(c)),
and then drops down to the mesh surface and the gripper is
closed to grab the proboscis (Fig 4(d)).

The robot lifts up 0.8 mm and drags the mosquito to a
position 1.5 mm from the blades (Fig. 4(e)). Here, an image
from the onboard camera is again analyzed by the computer
vision system. This task serves two functions, to confirm
successful grasping of the mosquito, and to determine more
accurately where on the proboscis the gripper has grabbed.
The trial is considered a successful demonstration of grasping
if the mosquito is visualized as grasped within the micro-
gripper at this point.

C. Place Procedure

The vision system provides the location of the proximal
end of the proboscis, where it attaches to the mosquito’s
head. This location is transformed into robot coordinates and
a head-to-tooltip offset is determined by subtracting it from
the current encoder values. Only the offset in line with the
cartridge grooves (a horizontal offset in Fig. 4(e)) is con-
sidered. The robot then executes another set of programmed
movements. The robot raises the mosquito head 1.3 mm and
moves forward a nominal distance to clear the blades plus the
offset, such that the mosquito’s neck should be right above
the blades (Fig. 4(f)). Then the tooltip moves down 3.0 mm,
placing the neck within the notch of the blades if properly
aligned. At this point, another subsystem of the automated
mosquito dissection system would actuate the blades to cut
the head and further process the mosquito. In this unit test,

the blade is manually actuated. The test is considered a
successful placement if the mosquito’s neck is placed into
the notch of the dissection blades such that the head could
be removed. As a final step of the process, the robot pulls
away from the blade, moving the head, if still in its grasp,
to a location where it can be blown or rinsed off. Video
footage from all three cameras is recorded throughout and
saved for analysis. The robot axes are programmed to execute
all moves at a speed of 12.5 mm/s except the final drop to
lower the neck between the blades at which the robot is
programmed to move at 2.5 mm/s.

IV. RESULTS
Throughout the experiment, there were no issues moving

to a mosquito’s location, grasping it by the proboscis, or
dragging it on the surface of the cartridge. All 50 (100%)
of the mosquitoes were observed with the proboscis grasped
by the micro-gripper during the second vision check (Fig.
4(e)). Of these 50 mosquitoes, 45 (90%) were placed such
that their necks were aligned correctly within the blades. This
was determined by review of closeup video at the blades. An
example of a mosquito being accurately placed is provided
in Fig. 5 (a).

The five mosquitoes that were not accurately placed ex-
hibited similar behavior, flipping over the blades when pulled
down by the robot. This action is demonstrated in Fig. 5 (b).
In these cases the mosquitoes appear to collide with either the
slot walls or the blades. That collision point acts as fulcrum,
causing the downward motion of the robot to flip them over
the blades, rather than pull the neck into the notches. We
were unable to correlate this behavior with any other variable
including initial mosquito orientation, grasp location of the
proboscis, trial number, or a qualitative assessment of the
computer vision’s head-to-gripper offset estimation.

Fig. 5. A demonstration of mosquito placement. (a) A mosquito being
accurately placed with neck between the blades. (b) A mosquito being
flipped over the blades during attempted placement.

V. DISCUSSION
The robotic pick-and-place subsystem demonstrated

highly successful results in this unit test. With no failures in
grasping or moving the mosquito, the micro-gripper is shown
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to be adequately designed for the task. In order to both pick
and place any single mosquito, the system was required to
navigate to locations that were not explicitly programmed.
The ability of the system to achieve these promising results
indicates that the computer vision system was effective at
providing appropriate adaptations to robot movement.

Although we are still working to improve the system,
the 90% success rate from this initial pilot study is very
encouraging, especially considering the challenges presented
by this non-standard pick-and-place task. It is not surprising
that the placing task would prove more difficult than grasping
the mosquitoes as it requires more accuracy. In order to move
the mosquito, the robot can grasp anywhere on the length
of the proboscis. Placing the mosquito’s neck between the
blades requires more precision and any inconsistencies in
grasping, deformation, and anatomy must be accommodated
in this step. Using a head-to-tooltip offset determined by
the vision system worked well and we will continue to
enhance the performance through improvements to the vision
algorithm at this step.

In the few cases where adequate placement was not
achieved, the mosquitoes were observed to flip over the
blades about a contact point with either the blades or the car-
tridge. This behavior occurred both when the neck appeared
to be misaligned with the blade notches as well as in cases
when the alignment appeared adequate. When there was neck
misalignment, either the head or body of the mosquito, which
are wider than the notch within the blades, contacted the top
of the blades and caused the mosquito to flip over when the
robot pulled the proboscis downward. Our work to better
determine the tooltip-to-head offset should improve the ac-
curacy of alignment, and we will also investigate if adjusting
the angle from which the images are taken can improve
our estimation. As the robot holds the proboscis above the
cartridge surface, its length is foreshortened in the top-down
view provided by the onboard camera. A better estimation of
the offset may be obtained geometrically or from a side-view
camera where the proboscis profile should not be distorted.
We will also target further improvement through mechanical
changes to the blade and cartridge geometries to better guide
the mosquito neck into position even in cases of small errors
in robot positioning. These modifications should also address
the situations in which alignment appeared adequate by video
observation, but a flip still occurred.

VI. CONCLUSION

We have presented the design and implementation of a
robotic system for performing the challenging and non-
standard pick-and-place task involved in mosquito dissection.
Successful demonstration of this process represents a major
milestone in our effort to automate the malaria vaccine
production process. The micro-gripper performed with high
accuracy and consistency and the system’s performance
indicates reliable vision and calibration techniques. Our
methods proved to adapt well to anatomical and positional
differences amongst the tested mosquitoes. These results
will help to inform the further design of this subsystem, its

companions, and their interfaces, ultimately contributing to
an automated mosquito dissection system to facilitate the
scalable production of PfSPZ-based malaria vaccines.
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